In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Syntheses, reactivity, structures and photocatalytic properties of mononuclear ruthenium(II) complexes supported by 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3tacn) ligands, published in 2021-02-01, which mentions a compound: 1762-34-1, Name is 5,5′-Dimethyl-2,2′-bipyridine, Molecular C12H12N2, Formula: C12H12N2.
Treatment of ruthenium(II) precursor [(Me3tacn)Ru(DMSO)Cl2] (Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane, DMSO = dimethylsulfoxide) (1) with concentrated HCl in the presence of air afforded a ruthenium(III) complex [(Me3tacn)RuCl3·H2O] (2). Reaction of 2, 2,2′-bipyridine or substituted 2,2′-bipyridine, and zinc metal powder in the presence of sodium perchlorate gave the corresponding cationic aquaruthenium(II) complex [(Me3tacn)Ru(R-bpy)(H2O)](ClO4)2 (bpy = 2,2′-bipyridine, R = H, 3; 4,4′-Me2, 4; 5,5′-Me2, 5; 4,4′-di-tBu, 6). The hydrate ligand in complexes 3 and 5 could be substituted by acetonitrile or pyridine forming complexes [(Me3tacn)Ru(5,5′-Me2-bpy)(MeCN)](ClO4)2 (7) and [(Me3tacn)Ru(R-bpy)(py)](ClO4)2 (py = pyridine, R = H (8), R = 5,5′-Me2 (9)), resp. Interaction of [(Me3tacn)Ru(bpy)(H2O)](PF6)2 with phenylacetylene in methanol afforded a ruthenium-carbene complex [(Me3tacn)(bpy)Ru:C(OMe)CH2Ph](PF6)2 (10). All complexes are well characterized by IR, UV/visible, and NMR spectroscopies. The mol. structures of 1, 1·2H2O, 4·2H2O, 7, 8, 9, and 10 were also established by single-crystal X-ray diffraction. The photocatalysis properties of complexes 3, 5, and 6 for H2 evolution by water splitting were also studied.
In some applications, this compound(1762-34-1)Formula: C12H12N2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.