Song, Yang; Pi, Yunhong; Feng, Xuanyu; Ni, Kaiyuan; Xu, Ziwan; Chen, Justin S.; Li, Zhong; Lin, Wenbin published the article 《Cerium-Based Metal-Organic Layers Catalyze Hydrogen Evolution Reaction through Dual Photoexcitation》. Keywords: metal organic layer photocatalyst hydrogen evolution photosensitizer ligand.They researched the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1 ).Application of 1762-34-1. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:1762-34-1) here.
Cerium-based materials such as ceria are increasingly used in catalytic reactions. We report here the synthesis of the first Ce-based metal-organic layer (MOL), Ce6-BTB, comprising Ce6 secondary building units (SBUs) and 1,3,5-benzenetribenzoate (BTB) linkers, and its functionalization for photocatalytic hydrogen evolution reaction (HER). Ce6-BTB was postsynthetically modified with photosensitizing [(MBA)Ir(ppy)2]Cl or [(MBA)Ru(bpy)2]Cl2 (MBA = 2-(5′-methyl-[2,2′-bipyridin]-5-yl)acetate, ppy = 2-phenylpyridine, bpy = 2,2′-bipyridine) to afford Ce6-BTB-Ir or Ce6-BTB-Ru MOLs, resp. The proximity of photosensitizing ligands and Ce6 SBUs in the MOLs facilitates electron transfer to drive photocatalytic HER under visible light with turnover numbers of 1357 and 484 for Ce6-BTB-Ir and Ce6-BTB-Ru, resp. Photophys. and electrochem. studies revealed a novel dual photoexcitation pathway whereby the excited photosensitizers in the MOL are reductively quenched and then transfer electrons to Ce6 SBUs to generate CeIII centers, which are further photoexcited to CeIII* species for HER.
This literature about this compound(1762-34-1)Application of 1762-34-1has given us a lot of inspiration, and I hope that the research on this compound(5,5′-Dimethyl-2,2′-bipyridine) can be further advanced. Maybe we can get more compounds in a similar way.