Simple exploration of C8H9NO2

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 22013-33-8

Reference of 22013-33-8, The main research directions are chemical synthesis, new energy materials, nano-hybrid composite materials, preparation and modification of special coatings, and research on the structure of functional materials. we perform experiments in the lab. 22013-33-8, Name is 2,3-Dihydrobenzo[b][1,4]dioxin-6-amine,introducing its new discovery.

Pd/Cu-catalyzed dual C-H bond carbonylation towards the synthesis of fluorazones

Pd/Cu catalyzed oxidative dual C-H bond activation/carbonylation still remains a great challenge due to the generation of by-products via C-C bond formation. Herein we developed a straightforward Pd/Cu-catalyzed oxidative dual C-H bond carbonylation process to access biologically and pharmaceutically important fluorazones from easily available N-aryl pyrroles and CO. A wide range of functional groups were well tolerated in this transformation, and O2 could be utilized as the only terminal oxidant to promote the oxidative carbonylation process.

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 22013-33-8

Reference£º
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem