Extracurricular laboratory: Synthetic route of 1762-34-1

As far as I know, this compound(1762-34-1)SDS of cas: 1762-34-1 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

SDS of cas: 1762-34-1. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Cerium-Based Metal-Organic Layers Catalyze Hydrogen Evolution Reaction through Dual Photoexcitation. Author is Song, Yang; Pi, Yunhong; Feng, Xuanyu; Ni, Kaiyuan; Xu, Ziwan; Chen, Justin S.; Li, Zhong; Lin, Wenbin.

Cerium-based materials such as ceria are increasingly used in catalytic reactions. We report here the synthesis of the first Ce-based metal-organic layer (MOL), Ce6-BTB, comprising Ce6 secondary building units (SBUs) and 1,3,5-benzenetribenzoate (BTB) linkers, and its functionalization for photocatalytic hydrogen evolution reaction (HER). Ce6-BTB was postsynthetically modified with photosensitizing [(MBA)Ir(ppy)2]Cl or [(MBA)Ru(bpy)2]Cl2 (MBA = 2-(5′-methyl-[2,2′-bipyridin]-5-yl)acetate, ppy = 2-phenylpyridine, bpy = 2,2′-bipyridine) to afford Ce6-BTB-Ir or Ce6-BTB-Ru MOLs, resp. The proximity of photosensitizing ligands and Ce6 SBUs in the MOLs facilitates electron transfer to drive photocatalytic HER under visible light with turnover numbers of 1357 and 484 for Ce6-BTB-Ir and Ce6-BTB-Ru, resp. Photophys. and electrochem. studies revealed a novel dual photoexcitation pathway whereby the excited photosensitizers in the MOL are reductively quenched and then transfer electrons to Ce6 SBUs to generate CeIII centers, which are further photoexcited to CeIII* species for HER.

As far as I know, this compound(1762-34-1)SDS of cas: 1762-34-1 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem