Discover the magic of the 1762-34-1

As far as I know, this compound(1762-34-1)SDS of cas: 1762-34-1 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

SDS of cas: 1762-34-1. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Boosting Photocatalytic Activities for Organic Transformations through Merging Photocatalyst and Transition-Metal Catalyst in Flexible Polymers. Author is Pan, Yao; Zhang, Nan; Liu, Chun-Hua; Fan, Shilu; Guo, Song; Zhang, Zhi-Ming; Zhu, Yuan-Yuan.

The merger of photocatalysis and transition-metal catalysis is of particular interest to develop useful and challenging synthetic methodologies. The catalytic activities of conventional dual-catalytic systems, however, are limited by the low synergistic efficiency between discrete catalytic centers due to their long average distance in solution Herein we carefully decorated Ir(III) photosensitizers and Ni(II) transition-metal catalyst into flexible polymers to afford two polymer-supported dual catalysts (P1-Ni and P2-Ni). These polyelectrolyte-type metallopolymers assembled into spherical polymer particles in some polar solvents. Their unique mol. and assembled structure contributed to shortening the distance between catalytic centers and increasing the local catalysts′ concentration within the catalyst, thereby greatly facilitating their electron, energy, and organic radical transfers during the catalytic cycles. The enhanced energy interaction and matched redox potential between two catalytic centers within the polymer were confirmed by steady- and transient-state luminescent spectra and cyclic voltammetry. These features enable them in catalyzing challenging organic transformations that involve efficiently incorporated photocatalytic and transition-metal catalytic cycles. We demonstrated that these two catalysts were highly effective in catalyzing C-S cross-coupling, C-O functionalized, C-N cross-coupling, and C-C cross-coupling reactions with broad substrate scopes and low catalyst loadings with turnover numbers of ~3100, ~1500, ~1400, and ~500, resp. This work provides a general methodol. to merge photosensitizer and transition-metal catalyst in a flexible polymer for significantly boosting the catalytic activity.

As far as I know, this compound(1762-34-1)SDS of cas: 1762-34-1 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

A new application about 1762-34-1

As far as I know, this compound(1762-34-1)Formula: C12H12N2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 1762-34-1, is researched, Molecular C12H12N2, about Exploiting the versatility of pyridyl ligands for the preparation of diorganotin (IV) adducts: spectral, crystallographic and Hirshfeld surface analysis studies, the main research direction is diorganotin pyridyl complex preparation Hirshfeld surface analysis; crystal structure mol diorgano tin bidentate pyridyl complex supramol.Formula: C12H12N2.

Diorganotin (IV) complexes SnR2X2 (R = Me, Ph; X = Cl, NCS) form a series of versatile complexes when react with bidentate substituted pyridyl ligands. The reaction of dimethyltin dichloride with 5,5′-dimethyl-2,2′-bipyridine (5,5′-Me2bpy) resulted in the formation of [SnMe2Cl2(5,5′-Me2bpy)] (1). Moreover, the reaction of SnMe2(NSC)2 with 4,4′-di-tert-butyl-2,2′-bipyridine (bu2bpy), 1,10-phenanthroline (phen) and 4,7-diphenyl-1,10-phenanthroline (bphen) affords the hexa-coordinated complexes [SnMe2(NCS)2(bu2bpy)] (2), [SnMe2(NCS)2(phen)] (3) and [SnMe2(NCS)2(bphen)] (4), resp. The resulting complexes have been characterized using elemental anal., IR, multinuclear NMR (1H, 13C, 119Sn) and DEPT-135° NMR spectroscopy. On the other hand, the reaction of diphenyltin dichloride with 2,2′-biquinoline (biq) and 4,7-phenantroline (4,7-phen) led to the formation of polymeric complexes of [SnPh2Cl2(4,7-phen)]n (5) and [SnPh2Cl2(biq)]n (6). The NMR spectra, however, reveal the ligand lability in solution and suggest a coordination number of 5. The X-ray crystal structures of complexes [SnMe2Cl2(5,5′-Me2bpy)] (1), [SnMe2(NCS)2(bu2bpy)] (2) and [SnMe2(NCS)2(bphen)] (4) have been determined which reveal that the geometry around the tin atom is distorted octahedral with trans-[SnMe2] configuration. Interestingly, the crystal structure of (H2biq)2[SnPh2Cl4]•2CHCl3 (7) was characterized by X-ray crystallog. from a chloroform solution of [SnPh2Cl2(biq)]n (6) indicating the formation of doubly protonated [H2biq]+ and [Ph2SnCl4]2- which are stabilized by a network of hydrogen bonds with a feature of trans-[SnPh2]. The 3D Hirshfeld surface anal. and 2D fingerprint maps were used for quant. mapping out of the intermol. interactions for 1, 2, 4 and 7 which show the presence of π-π and hydrogen bonding interactions which are associated between donor and acceptor atoms (N, S, Cl) in the solid state.

As far as I know, this compound(1762-34-1)Formula: C12H12N2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

The effect of reaction temperature change on equilibrium 1762-34-1

As far as I know, this compound(1762-34-1)Application In Synthesis of 5,5′-Dimethyl-2,2′-bipyridine can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Application In Synthesis of 5,5′-Dimethyl-2,2′-bipyridine. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about A new polymorph of six-coordinated bis(5,5′-dimethyl-2,2′-bipyridine) nitratocopper(II) nitrate and its DNA interactions. Author is Goncalves, Guilherme R.; de Carvalho, Alexandre B.; Honorato, Joao; Oliveira, Katia M.; Correa, Rodrigo S..

Here, the authors present a new polymorph of the [Cu(5mebipy)(NO3)]NO3 complex (1, Form II), where 5mebipy means 5,5′-dimethyl-2,2′-bipyridine. 1 Was characterized by spectroscopic techniques and single-crystal x-ray diffraction. Form II presents a six-coordinated structure, meanwhile the Form I, previously reported, is five-coordinated with the nitrate ligand as monodentate. The mol. structures of both crystalline forms were compared based on intramol. aspects using Kleywegt’s anal. and the intermol. contacts evaluated by Hirshfeld surface studies. Also, the interaction of [Cu(5mebipy)(NO3)]+ with CT-DNA was carried out using viscosity and spectrophotometric titrations, exhibiting a binding constant of 2.57 × 104 M – 1. This study contributes to explore the intra and intermol. details of the new polymorph of [Cu(5mebipy)(NO3)]NO3 and its capability to interacts with CT-DNA.

As far as I know, this compound(1762-34-1)Application In Synthesis of 5,5′-Dimethyl-2,2′-bipyridine can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Discover the magic of the 1762-34-1

As far as I know, this compound(1762-34-1)Recommanded Product: 1762-34-1 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Li, Xin; Feng, Qi; Liu, Manyu; Deng, Qianying; Jia, Zihan; Sun, Yangqian; Zuo, Xin; Shi, Junjie; Song, Hui-Hua; Yu, Hai-Tao published the article 《D/L-mandelic acid-based three new Pb(II) coordination polymers: Influence of temperature and 5,5′-dimethyl-2,2′-dipyridyl ancillary ligand on constructuring enantiomeric coordination polymers》. Keywords: lead mandelate methylbipyridine coordination polymer preparation thermal stability homochirality; fluorescence crystal structure lead mandelate methylbipyridine coordination polymer.They researched the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1 ).Recommanded Product: 1762-34-1. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:1762-34-1) here.

Three new Pb(II) coordination polymers, namely [Pb2(mand)2]n (1), {[Pb(L-Hmand)(NO3)(5,5′-DM-2,2′-bipy)]·2H2O}n (2-L), {[Pb(D-Hmand)(NO3)(5,5′-DM-2,2′-bipy)]·2H2O}n (2-D) (H2mand = D/L-mandelic acid, 5,5′-DM-2,2′-bipy = 5,5′-dimethyl-2,2′-bipyridyl), have been prepared Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, powder X-ray diffraction and thermogravimetric analyses. Complex 1 crystallizes in the triclinic system with space group P-1, and displays a 2D layer structure. Complexes 2-L and 2-D are pairs of enantiomers. They crystallize in the same chiral space group P212121 and feature a 1D chain structure. The influence of the temperature and steric-hindrance of 5,5′-dimethyl-2,2′-dipyridyl mols. on constructing enantiomeric Pb(II) coordination polymers based on chiral mandelic acid ligands have been demonstrated. In addition, the CD (CD) spectroscopy of 2-L and 2-D exhibit obvious pos. or neg. Cotton effects indicating their homochirality. The luminescent properties of 1, 2-L and 2-D in the solid state have also been investigated.

As far as I know, this compound(1762-34-1)Recommanded Product: 1762-34-1 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Interesting scientific research on 1762-34-1

As far as I know, this compound(1762-34-1)SDS of cas: 1762-34-1 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Li, Xin; Feng, Qi; Liu, Manyu; Deng, Qianying; Jia, Zihan; Sun, Yangqian; Zuo, Xin; Shi, Junjie; Song, Hui-Hua; Yu, Hai-Tao researched the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1 ).SDS of cas: 1762-34-1.They published the article 《D/L-mandelic acid-based three new Pb(II) coordination polymers: Influence of temperature and 5,5′-dimethyl-2,2′-dipyridyl ancillary ligand on constructuring enantiomeric coordination polymers》 about this compound( cas:1762-34-1 ) in Inorganic Chemistry Communications. Keywords: lead mandelate methylbipyridine coordination polymer preparation thermal stability homochirality; fluorescence crystal structure lead mandelate methylbipyridine coordination polymer. We’ll tell you more about this compound (cas:1762-34-1).

Three new Pb(II) coordination polymers, namely [Pb2(mand)2]n (1), {[Pb(L-Hmand)(NO3)(5,5′-DM-2,2′-bipy)]·2H2O}n (2-L), {[Pb(D-Hmand)(NO3)(5,5′-DM-2,2′-bipy)]·2H2O}n (2-D) (H2mand = D/L-mandelic acid, 5,5′-DM-2,2′-bipy = 5,5′-dimethyl-2,2′-bipyridyl), have been prepared Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, powder X-ray diffraction and thermogravimetric analyses. Complex 1 crystallizes in the triclinic system with space group P-1, and displays a 2D layer structure. Complexes 2-L and 2-D are pairs of enantiomers. They crystallize in the same chiral space group P212121 and feature a 1D chain structure. The influence of the temperature and steric-hindrance of 5,5′-dimethyl-2,2′-dipyridyl mols. on constructing enantiomeric Pb(II) coordination polymers based on chiral mandelic acid ligands have been demonstrated. In addition, the CD (CD) spectroscopy of 2-L and 2-D exhibit obvious pos. or neg. Cotton effects indicating their homochirality. The luminescent properties of 1, 2-L and 2-D in the solid state have also been investigated.

As far as I know, this compound(1762-34-1)SDS of cas: 1762-34-1 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Discovery of 1762-34-1

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)HPLC of Formula: 1762-34-1, illustrating the importance and wide applicability of this compound(1762-34-1).

HPLC of Formula: 1762-34-1. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about A novel Au(III) complex with the 5,5′-dimethyl-2,2′-bipyridine ligand: Synthesis, characterization, X-ray crystal structure and biological evaluation. Author is Kondori, Tahere; Ghaznavi, Habib; Afshari, Fahimeh; Shahraki, Sheida; Shahraki, Jafar; Dusek, Michal; Kucerakova, Monika; Shahraki, Omolbanin.

A novel gold complex: [Au(5 5′-dmbipy)(Cl)2] (a) which dmbipy is 5, 5′-Dimethyl-2, 2′-bipyridine was synthesized and different techniques were applied to confirm the chem. structure. The structure consists of a gold cation chelated by one neutral bipyridine ligand two (Cl-) ions and one (Cl-) ion inside and outside of the coordination sphere, resp. Thermodn. parameters (ΔH° ΔS° and ΔG°) calculated from FS-DNA interaction of complex showed that electrostatic binding have an essential function in the interaction of DNA-Au(III) complex. Addnl. relative viscosity of DNA did not change while the concentration increased. As proved by CD spectra the DNA structure changed. The synthesized compound exhibited an effective cytotoxic behavior against cancerous cell lines. The mol. docking exploration indicated the non-intercalative mode of binding which confirms the obtained results from spectroscopy viscometry and CD techniques.

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)HPLC of Formula: 1762-34-1, illustrating the importance and wide applicability of this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

What kind of challenge would you like to see in a future of compound: 1762-34-1

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)HPLC of Formula: 1762-34-1, illustrating the importance and wide applicability of this compound(1762-34-1).

HPLC of Formula: 1762-34-1. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Theoretical and experimental study of torsional potentials, molecular structure (monomer and dimer), vibrational analysis and molecular characteristics of some dimethyl bipyridines. Author is Ravindranath, L.; Reddy, B. Venkatram.

This study deals with the determination of torsional potentials, mol. geometry in monomer and dimer form and vibrational assignments of 4,4′-dimethyl-2,2′-bipyridine (4DB); 5,5′-dimethyl-2,2′-bipyridine (5DB); and 6,6′-dimethyl-2,2′-bipyridine (6DB) using quantum chem. calculations carried out by d. functional theory (DFT) employing B3LYP functional in conjunction with 6-311++G(d,p) basis set. Existence of inter-mol. hydrogen bonds was predicted. Fourier Transform IR (FTIR) and Fourier Transform Raman (FT-Raman) spectra were recorded and vibrational anal. of the mols. was made using potential energy distribution (PED) and eigen vectors obtained in the computations. Observed and calculated frequencies agreed with an rms error 9.20, 8.21, and 8.33 cm-1 for 4DB, 5DB, and 6DB, resp. 1H and 13C NMR spectra were simulated using time-dependent DFT ; compared with the recorded exptl. spectra of the samples in Chloroform-d (CDCl3) solvent and observed that the chem. shifts agree well with their theor. counterparts. Electronic transitions were analyzed using exptl. and simulated UV-Vis spectra of the three mols. Mol. characteristics like HOMO-LUMO; thermodn. parameters; and mol. electrostatic surface potential (MESP) quantified with natural charges obtained by NBO anal. are also investigated.

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)HPLC of Formula: 1762-34-1, illustrating the importance and wide applicability of this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Awesome and Easy Science Experiments about 1762-34-1

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Safety of 5,5′-Dimethyl-2,2′-bipyridine, illustrating the importance and wide applicability of this compound(1762-34-1).

Safety of 5,5′-Dimethyl-2,2′-bipyridine. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Boosting Photocatalytic Activities for Organic Transformations through Merging Photocatalyst and Transition-Metal Catalyst in Flexible Polymers. Author is Pan, Yao; Zhang, Nan; Liu, Chun-Hua; Fan, Shilu; Guo, Song; Zhang, Zhi-Ming; Zhu, Yuan-Yuan.

The merger of photocatalysis and transition-metal catalysis is of particular interest to develop useful and challenging synthetic methodologies. The catalytic activities of conventional dual-catalytic systems, however, are limited by the low synergistic efficiency between discrete catalytic centers due to their long average distance in solution Herein we carefully decorated Ir(III) photosensitizers and Ni(II) transition-metal catalyst into flexible polymers to afford two polymer-supported dual catalysts (P1-Ni and P2-Ni). These polyelectrolyte-type metallopolymers assembled into spherical polymer particles in some polar solvents. Their unique mol. and assembled structure contributed to shortening the distance between catalytic centers and increasing the local catalysts′ concentration within the catalyst, thereby greatly facilitating their electron, energy, and organic radical transfers during the catalytic cycles. The enhanced energy interaction and matched redox potential between two catalytic centers within the polymer were confirmed by steady- and transient-state luminescent spectra and cyclic voltammetry. These features enable them in catalyzing challenging organic transformations that involve efficiently incorporated photocatalytic and transition-metal catalytic cycles. We demonstrated that these two catalysts were highly effective in catalyzing C-S cross-coupling, C-O functionalized, C-N cross-coupling, and C-C cross-coupling reactions with broad substrate scopes and low catalyst loadings with turnover numbers of ~3100, ~1500, ~1400, and ~500, resp. This work provides a general methodol. to merge photosensitizer and transition-metal catalyst in a flexible polymer for significantly boosting the catalytic activity.

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Safety of 5,5′-Dimethyl-2,2′-bipyridine, illustrating the importance and wide applicability of this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

What I Wish Everyone Knew About 1762-34-1

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Related Products of 1762-34-1, illustrating the importance and wide applicability of this compound(1762-34-1).

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Syntheses, reactivity, structures and photocatalytic properties of mononuclear ruthenium(II) complexes supported by 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3tacn) ligands, published in 2021-02-01, which mentions a compound: 1762-34-1, Name is 5,5′-Dimethyl-2,2′-bipyridine, Molecular C12H12N2, Related Products of 1762-34-1.

Treatment of ruthenium(II) precursor [(Me3tacn)Ru(DMSO)Cl2] (Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane, DMSO = dimethylsulfoxide) (1) with concentrated HCl in the presence of air afforded a ruthenium(III) complex [(Me3tacn)RuCl3·H2O] (2). Reaction of 2, 2,2′-bipyridine or substituted 2,2′-bipyridine, and zinc metal powder in the presence of sodium perchlorate gave the corresponding cationic aquaruthenium(II) complex [(Me3tacn)Ru(R-bpy)(H2O)](ClO4)2 (bpy = 2,2′-bipyridine, R = H, 3; 4,4′-Me2, 4; 5,5′-Me2, 5; 4,4′-di-tBu, 6). The hydrate ligand in complexes 3 and 5 could be substituted by acetonitrile or pyridine forming complexes [(Me3tacn)Ru(5,5′-Me2-bpy)(MeCN)](ClO4)2 (7) and [(Me3tacn)Ru(R-bpy)(py)](ClO4)2 (py = pyridine, R = H (8), R = 5,5′-Me2 (9)), resp. Interaction of [(Me3tacn)Ru(bpy)(H2O)](PF6)2 with phenylacetylene in methanol afforded a ruthenium-carbene complex [(Me3tacn)(bpy)Ru:C(OMe)CH2Ph](PF6)2 (10). All complexes are well characterized by IR, UV/visible, and NMR spectroscopies. The mol. structures of 1, 1·2H2O, 4·2H2O, 7, 8, 9, and 10 were also established by single-crystal X-ray diffraction. The photocatalysis properties of complexes 3, 5, and 6 for H2 evolution by water splitting were also studied.

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Related Products of 1762-34-1, illustrating the importance and wide applicability of this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Properties and Exciting Facts About 1762-34-1

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Category: benzodioxans, illustrating the importance and wide applicability of this compound(1762-34-1).

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Cross-Electrophile C(sp2)-Si Coupling of Vinyl Chlorosilanes, the main research direction is cross electrophile coupling vinyl chloro silane carbon silicon bond; cross-coupling; nickel; organosilanes; reductive coupling; vinylsilanes.Category: benzodioxans.

The cross-electrophile coupling has become a powerful tool for C-C bond formation, but its potential for forging the C-Si bond remains unexplored. Here we report a cross-electrophile Csp2-Si coupling reaction of vinyl/aryl electrophiles with vinyl chlorosilanes. This new protocol offers an approach for facile and precise synthesis of organosilanes with high mol. diversity and complexity from readily available materials. The reaction proceeds under mild and non-basic conditions, demonstrating a high step economy, broad substrate scope, wide functionality tolerance, and easy scalability. The synthetic utility of the method is shown by its efficient accessing of silicon bioisosteres, the design of new BCB-monomers, and studies on the Hiyama cross-coupling of vinylsilane products.

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Category: benzodioxans, illustrating the importance and wide applicability of this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem