HPLC of Formula: 1762-34-1. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about A series of lanthanide complexes with 2-fluorobenzoic acid and 5,5′-dimethyl-2,2′-bipyridine: Synthesis, supramolecular structures, spectroscopy and thermal behaviour. Author is Du, Dan-Dan; Ren, Ning; Zhang, Jian-Jun.
A family of lanthanide-based self-assembling complexes constructed from 2-fluorobenzoic acid and 5,5′-dimethyl-2,2′-bipyridine have been successfully fabricated via conventional synthesis, namely, [Ln(2-FBA)3(5,5′-DM-2,2′-bipy)]2 (2-FBA = 2-fluorobenzoate, 5,5′-DM-2,2′-bipy = 5,5′-dimethyl-2,2′-bipyridine, Ln = La (1), Pr (2), Nd (3), Sm (4), Gd (5), Dy (6), Ho (7), Er (8)). The obtained complexes are investigated by elemental anal., IR spectra, Raman spectra and single-crystal x-ray diffraction. Crystallog. results exhibit that each Ln3+ ion of them is located in a distorted Muffin coordination sphere finished by seven oxygen atoms of 2-FBA ligands and two nitrogen atoms of 5,5′-DM-2,2′-bipy ligand. Interestingly, although complexes 1-6 and 7-8 have the same formula unit, the differences in hydrogen bond interactions lead to different supramol. structures. Besides, the thermal decomposition mechanism of the complexes has been studied by TG/DSC-FTIR technol. The results show that these complexes are thermally stable up to 450 K. In addition, complexes 4 and 6 both exhibit the characteristic fluorescence of lanthanide ions, i.e., complex 4 exhibits characteristic 4G5/2→6HJ/2 (J = 5, 7, 9) transitions, and complex 6 shows characteristic 4F9/2→6HJ/2 (J = 15, 13) transitions.
There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)HPLC of Formula: 1762-34-1, and with the development of science, more effects of this compound(1762-34-1) can be discovered.