Safety of 5,5′-Dimethyl-2,2′-bipyridine. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Spectroscopic, structural and DFT studies of luminescent Pt(II) and Ag(I) complexes with an asymmetric 2,2′-bipyridine chelating ligand. Author is Yilmaz, Ismail; Acar-Selcuki, Nursel; Coles, Simon J.; Pekdemir, Fatih; Sengul, Abdurrahman.
A new unsym. substituted 2,2′-bipyridine ligand, 5-methyl-5′-carbomethoxy-2,2′-bipyridine (L) was isolated from the dry distillation of the copper(II) complex, mono-aqua-bis(trans-5-methyl-pyridine-2-carboxylato-N,O)copper(II). The ligand was fully characterized. The spectroscopic and single-crystal x-ray diffraction (SCXRD) studies of the coordination compounds of the ligand with platinum(II) and silver(I); cis-Pt(L)Cl2 (1) and [Ag(L)2]PF6 (2), resp. are reported. In 1, the Pt center coordinates to tertiary N atoms of the ligand and two chloride ions to form a neutral square-planar coordination sphere, while in 2, the Ag(I) center is coordinated by two ligands through N atoms to generate a cationic flattened tetrahedron geometry in which two mean planes intersect each other at 50.93°. The pyridine rings are nearly coplanar as revealed by the torsion angle of N2-C7-C6-N1 1.32(5)°. In both complexes, L acts as a chelating ligand through pyridyl N atoms. In 1, the mol. units are stacked in a head-to-tail fashion with a Pt···Pt separation of 3.5 Å. Supramol. self-assembly of the mol. units by extensive intermol. contacts through C-H···Cl and C-H···O between the adjacent units results in an infinite two-dimensional flattened-out herringbone structure in the crystalline state. In 2, the mol. units are interconnected with each other by C-H···O contacts between the adjacent units running parallel to each other. Both complexes are fluorescent in solution and have emission maxima in the UV-Vis regions, which is a very important property for optoelectronic applications. DFT (d. functional theory) and TD-DFT (time-dependent-DFT) calculations were performed at B3LYP/6-311+G(d,p)/LANL2DZ level to explore structural, electronic, and spectroscopic properties to compare with the exptl. results. The MOs were carried out with DFT at the same level.
This literature about this compound(1762-34-1)Safety of 5,5′-Dimethyl-2,2′-bipyridinehas given us a lot of inspiration, and I hope that the research on this compound(5,5′-Dimethyl-2,2′-bipyridine) can be further advanced. Maybe we can get more compounds in a similar way.