Why Are Children Getting Addicted To 1762-34-1

Compound(1762-34-1)Quality Control of 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Quality Control of 5,5′-Dimethyl-2,2′-bipyridine. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Controlling the Synthesis of Metal-Organic Framework UiO-67 by Tuning Its Kinetic Driving Force. Author is Kaur, Gurpreet; Oeien-Oedegaard, Sigurd; Lazzarini, Andrea; Chavan, Sachin Maruti; Bordiga, Silvia; Lillerud, Karl Petter; Olsbye, Unni.

The successful synthesis of metal-organic framework (MOF) compounds relies on an intricate interplay between the components of the synthesis liquor at the given synthesis conditions. The interdependence of modulator, linker, and solvent amounts in the synthesis of the Zr-based MOF, UiO-67, is explored. Probably control of linker vacancy defects in UiO-67 is feasible by tuning the ratios of these components, and such control derives from recognizing the kinetic driving forces during MOF crystal growth. Linker vacancy defects (and modulator mols. occupying linker sites) can be reduced by limiting the solvent amount to maintain a saturated concentration of linker throughout the synthesis. The method enables formation of UiO-67 with an ideal 1:1 ratio between Zr and the 4,4′-biphenyldicarboxylic acid linker, without surplus linker in the mother liquor or addnl. post-synthetic steps, and reduces the amount of DMF solvent to <20% the amount in previously reported procedures. Compound(1762-34-1)Quality Control of 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

The origin of a common compound about 1762-34-1

Compound(1762-34-1)Quality Control of 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Quality Control of 5,5′-Dimethyl-2,2′-bipyridine. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about A binuclear iron(III) complex of 5,5′-dimethyl-2,2′-bipyridine as cytotoxic agent. Author is Kondori, Tahere; Akbarzadeh-T, Niloufar; Ghaznavi, Habib; Karimi, Zeinab; Shahraki, Jafar; Sheervalilou, Roghayeh; Shahraki, Omolbanin.

The binuclear iron(III) complex (1), namely, {[Fe(5,5′-dmbpy)2(OH2)]2(O)}(NO3)4 with a distorted octahedral coordination, formed by four nitrogen and two oxygen atoms, was previously reported by our team. In this study the DNA-binding and cytotoxicity evaluation for target complex were studied. The results indicated strong cytotoxicity activity against A549 cells comparable to cisplatin values. The binding interaction between complex 1 and FS-DNA was investigated by UV-Vis, fluorescence spectroscopy, and gel electrophoresis at physiol. pH (7.2). The DNA binding investigation has shown groove binding interactions with complex 1, therefore the hydrogen binding plays an important role in the interaction of DNA with complex 1. The calculated thermodn. parameters (ΔH°, ΔS° and ΔG°) show that hydrogen bonding and Vander-Waals forces have an important function in Fe(III) complex-DNA interaction. Moreover, DNA cleavage was studied using agarose gel electrophoresis. Viscosity measurements illustrated that relative viscosity of DNA was unchanged with the adding concentrations of Fe(III) complex. Mol. docking simulation results confirmed the spectroscopic and viscosity titration outcomes.

Compound(1762-34-1)Quality Control of 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

The effect of reaction temperature change on equilibrium 1762-34-1

Compound(1762-34-1)Reference of 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Yin, Hong; Yang, Tong; Wang, Ke-Zhi; Tong, Jin; Yu, Shu-Yan published the article 《Unusual Photoelectrochemical Properties of Electropolymerized Films of a Triphenylamine-Containing Organic Small Molecule》. Keywords: photoelectrochem electropolymerized film triphenylamine organic small mol.They researched the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1 ).Reference of 5,5′-Dimethyl-2,2′-bipyridine. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:1762-34-1) here.

The electropolymerized films of poly(L)n on In-Sn oxide (ITO) electrode was prepared by anodic electrooxidation of a CH2Cl2 solution of a triphenylamine-carrying organic mol. L, and were characterized/studied by UV-visible absorption spectroscopy, XPS, x-ray diffraction, electrochem. impedance spectroscopy, cyclic voltammetry and photoelectrochem. measurements. Poly(L)n films show surface-controlled TPA•+1/0 associated quasi-reversible redox and exceptionally high photocurrent generation properties. At a zero external bias potential and under 100 mW/cm2 white light irradiation, a photoelectrochem. device composed of a Poly(L)1-modified ITO as working electode, a Pt disk counter electrode and SCE reference electrode in a 0.1M Na2SO4 aqueous solution exhibited a significant cathode photocurrent d. of 2.2μA/cm2, which could be switched to be anodic and outperform most previously reported mol.-based modified ITO electrodes under similar exptl. conditions. Poly(L)n films offer a number of future perspectives ranging from organic photovoltaic to photoelectrochem. catalysis and sensing.

Compound(1762-34-1)Reference of 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

You Should Know Something about 1762-34-1

Compound(1762-34-1)Formula: C12H12N2 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 1762-34-1, is researched, SMILESS is CC1=CN=C(C=C1)C1=NC=C(C)C=C1, Molecular C12H12N2Journal, Journal of Chemical Thermodynamics called Crystal structure, thermochemical and fluorescent properties of two novel binuclear lanthanide complexes with 3-chloro-4-methoxybenzoic acid and 5,5′-dimethy-2,2′-bipyridine, Author is Wu, Xiao-Hui; Ning, Ren; Zhang, Jian-Jun, the main research direction is chloro methoxybenzoic acid dimethy bipyridine structural thermochem fluorescence property.Formula: C12H12N2.

Two novel binuclear lanthanide complexes, [Ln(3-Cl-4-MOBA)3(5,5′-DM-2,2′-bipy)]2(5,5′-DM-2,2′-bipy) (Ln=Eu(1), Gd(2)), (3-Cl-4-MOBA=3-chloro-4-methoxybenzoate; 5,5′-DM-2,2′-bipy=5,5′-dimethy-2,2′-bipyridine) have been successfully synthesized under hydrothermal conditions. The complexes are characterized by single-crystal X-ray diffraction and elemental anal. Complexes 1 and 2 are isomorphous, and each metal center is eight-coordinated with a distorted square-antiprism coordination geometry. The binuclear units are assembled into 1D, 2D and 3D supramol. structures by weak hydrogen bonds (C-H···O and C-H···Cl) and π-π stacking interactions. Thermal behavior of the complexes 1 and 2 was determined by TG/DSC-FTIR techniques. Heat capacities of the complexes are measured by a DSC instrument in the temperature range of 283.15-393.15K. Based on the heat capacities date, the thermodn. functions (HT-H298.15K) and (ST-S298.15K) were obtained. The activation energy E values of the first decomposition stage for complexes 1 and 2 were calculated by integral iso-conversional nonlinear (NL-INT) method. The fluorescence spectra and lifetime of complex 1 (Eu3+ ion) were studied in depth.

Compound(1762-34-1)Formula: C12H12N2 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Share an extended knowledge of a compound : 1762-34-1

Compound(1762-34-1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Inorganica Chimica Acta called Synthesis, structural characterization and in vitro cytotoxic evaluation of mixed Cu(II)/Co(II) levofloxacin-bipyridyl complexes, Author is Bashir, Masrat; Yousuf, Imtiyaz, which mentions a compound: 1762-34-1, SMILESS is CC1=CN=C(C=C1)C1=NC=C(C)C=C1, Molecular C12H12N2, Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine.

This work features synthesis, structural characterization and biol. evaluation of two Cu(II)/Co(II)-based complexes (1 and 2) synthesized from levofloxacin (lvXn) and bipyridyl ligands. The structural elucidation of complexes 1 and 2 was carried out by anal., spectral (UV-vis, FTIR, EPR) and single crystal x-ray crystallog. techniques. The crystallog. details of complex 1 revealed a triclinic crystal system with P-1 space group and lattice parameters a = 10.32(7) Å, b = 11.75(8) Å, c = 14.85(9) Å, and α = 87.40°, β = 77.55°, γ = 66.26°. The DFT studies were performed to study the electronic structure and localization of HOMO and LUMO electron densities on the complexes. authors have also performed comparative in vitro DNA/BSA binding studies of complexes 1 and 2 by multispectroscopic methods to evaluate the cytotoxic potential of synthesized complexes which revealed better binding potential of copper analog. Furthermore, the cytotoxic assessment of copper analog was examined on a panel of five human cancer cell lines employing SRB assay which revealed remarkably good and selective cytotoxic activity towards A498 (kidney), HeLa (cervical) and HepG2 (hepatoma) cancer cell lines.

Compound(1762-34-1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Extracurricular laboratory: Synthetic route of 1762-34-1

Compound(1762-34-1)Formula: C12H12N2 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Molecular engineering towards tunable morphology of metal-organic complex microcrystals for efficient and multicolor electrochemiluminescence, published in 2021, which mentions a compound: 1762-34-1, Name is 5,5′-Dimethyl-2,2′-bipyridine, Molecular C12H12N2, Formula: C12H12N2.

Electrochemiluminescence (ECL) of crystalline materials has recently attracted increasing attention due to their unique characteristics and applications, such as crystallization-induced emission, active waveguiding, and biosensing. Tris(2,2′-bipyridine)ruthenium(II), [Ru(bpy)3]2+, a classical metal-organic complex for ECL studies, has been fully investigated in solution as well as its derivatives However, the dependence of ECL properties on the mol. structure and crystal morphol. of these complexes has not been illustrated, partially due to the difficulty in the controlled crystal growth. Here, we adopt a facile mol. engineering strategy to obtain microcrystals of [Ru(bpy)3]2+ derivatives with well-defined morphol. (rods, wires, or polyhedrons) and varied phosphorescence emission colors (yellow, orange, and red) by simply changing the position and number of Me substituents on the bipyridine ligands. The packing modes of mols. influenced by Me groups play a vital role in crystal growth based on attachment energy anal. The obtained microcrystals could act as ECL luminophores when modified on glassy carbon electrode surfaces. Those with one-dimensional (1D) morphol. generally show superior ECL efficiency and stability to three-dimensional (3D) shaped microcrystals. ECL biosensors made of stable 1D microcrystals show reliable and sensitive responses to hydroxyproline, demonstrating their capacity in recyclable detections. This work demonstrates the great potential of mol. engineering in controlling the morphol., emission colors, and ECL properties of mol. crystals, paving the way for the development of high-performance ECL biosensing and optoelectronic devices.

Compound(1762-34-1)Formula: C12H12N2 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Can You Really Do Chemisty Experiments About 1762-34-1

Compound(1762-34-1)HPLC of Formula: 1762-34-1 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Thermodynamics of the Adsorption of Isomeric Dipyridyls and Their Derivatives from Water-Organic Solutions on HYPERCARB Porous Graphitic Carbon, published in 2019-09-30, which mentions a compound: 1762-34-1, Name is 5,5′-Dimethyl-2,2′-bipyridine, Molecular C12H12N2, HPLC of Formula: 1762-34-1.

High-performance liquid chromatog. is used under near-equilibrium conditions to study the adsorption of isomeric dipyridyls and their derivatives from water-acetonitrile, water-methanol, and water-isopropanol solutions onto Hypercarb graphite-like carbon material in the region of Henry’s law. It is shown that the possibility of forming strong intramol. C-H-N’-hydrogen bonds in a mol. of 2,2′-dipyridyl or its derivatives strengthens the adsorption bonding of adsorbate mols. and the surface of the graphite-like material due to stabilization of their planar conformation. Destabilizing this intramol. hydrogen bond by adding substituents in different positions of the pyridine rings enhances the specific intermol. interaction between adsorbate mols. and the solvent’s components and distorts the planar conformation of dipyridyls, weakening their retention on the Hypercarb material. Pos. adsorption from the water-organic medium on the carbon adsorbent is observed for all of the investigated dipyridyls, with the exception of 2,2′-dipyridyl-N,N’-dioxide, which is adsorbed weaker than the solvent components. Anomalous medium-property dependences are found for the thermodn. characteristics of the adsorption of dipyridyls on porous graphitic carbon, and are attributed to the predominance of adsorbate-adsorbent π-π interactions over hydrophobic ones and the resolvation of adsorbate mols. with acetonitrile in proportion to lowering the content of water in the bulk solution

Compound(1762-34-1)HPLC of Formula: 1762-34-1 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

An update on the compound challenge: 1762-34-1

Compound(1762-34-1)Quality Control of 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Rosales-Vazquez, Luis D.; Valdes-Garcia, Josue; Bazany-Rodriguez, Ivan J.; German-Acacio, Juan M.; Martinez-Otero, Diego; Vilchis-Nestor, Alfredo R.; Morales-Luckie, Raul; Sanchez-Mendieta, Victor; Dorazco-Gonzalez, Alejandro published an article about the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1,SMILESS:CC1=CN=C(C=C1)C1=NC=C(C)C=C1 ).Quality Control of 5,5′-Dimethyl-2,2′-bipyridine. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1762-34-1) through the article.

Sensitive and direct sensing of cyanide in buffered aqueous solutions at pH = 7.0 by three new blue photoluminescent zinc-1,4-cyclohexanedicarboxylato coordination polymers bearing di-alkyl-2,2′-bipyridines has been achieved. Specifically, a Zn-polymer with the general formula: {[Zn2(H2O)2(e,a-cis-1,4-chdc)2(4,4′-dtbb)2]·7H2O}n, (1,4-chdc = 1,4-cyclohexanedicarboxylato and 4,4′-dtbb = 4,4′-ditert-butyl-2,2′-bipyridine) has been synthesized in high yield and studied as a luminescent chemosensor for halides, pseudohalides and a series of oxyanions in neutral water. CN- ions can be quant. detected by this polymer based on complete quenching (λem = 434 nm) in the sub-micromolar concentration range with a pronounced selectivity over common anions such as acetate, bromide and iodide. The quenching response (KSV = 9.7(±0.2) × 104 M-1) by the addition of CN- was also observed in the presence of typical interfering anions with a very low detection limit of 0.9μmol L-1 in buffered water at pH = 7.0. On the basis of the crystal structure and solid state CPMAS 13C-NMR correlation and 1H NMR, IR-ATR, MS-ESI(+) and SEM-EDS experiments, the optical change is attributed to the efficient release of its corresponding ditert-butyl-bipyridine, with the simultaneous formation of a zinc cyanide complex. The CPMAS 13C-NMR spectrum of the coordination polymer is consistent with the symmetry of the crystal structure. The use of flexible coordination polymers as fluorescent sensors for fast and selective detection of cyanide ions in pure aqueous solutions has been unexplored until now.

Compound(1762-34-1)Quality Control of 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Top Picks: new discover of 1762-34-1

Compound(1762-34-1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Ribeiro, Gabriel H.; Colina-Vegas, Legna; Clavijo, Juan C. T.; Ellena, Javier; Cominetti, Marcia R.; Batista, Alzir A. researched the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1 ).Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine.They published the article 《Ru(II)/N-N/PPh3 complexes as potential anticancer agents against MDA-MB-231 cancer cells (N-N = diimine or diamine)》 about this compound( cas:1762-34-1 ) in Journal of Inorganic Biochemistry. Keywords: ruthenium dipyridylamine diimine complex preparation crystal structure; electrochem antitumor activity lipophilicity ruthenium dipyridylamine diimine complex; DNA HSA binding ruthenium dipyridylamine diimine complex. We’ll tell you more about this compound (cas:1762-34-1).

The rational design of anticancer agents that acts in specific biol. targets is one of the most effective strategies for developing chemotherapeutic agents. Aiming at obtaining new ruthenium(II) compounds with good cytotoxicity against tumor cells, a series of new complexes of general formula [RuCl(PPh3)(Hdpa)(N-N)]Cl [PPh3 = triphenylphosphine, N-N = 2,2′-dipyridylamine (Hdpa) (1), 1,2-diaminoethane (en) (2), 2,2′-bipyridine (bipy) (3), 5,5′-dimethyl-2,2′-bipyridine (dmbipy) (4), 1,10-phenanthroline (phen) (5) and 4,7-diphenyl-1,10-phenanthroline (dphphen) (6)] were synthesized. The complexes were characterized by elemental anal. and spectroscopic techniques (IR, UV/Visible, and 1D and 2D NMR) and three of their x-ray structures were determined: [RuCl(PPh3)(Hdpa)2]Cl, [RuCl(PPh3)(Hdpa)(en)]Cl and [RuCl(PPh3)(Hdpa)(dmbipy)]Cl. All the complexes are more cytotoxic against the cancer cell line than against the non-tumor cell line, highlighting complexes 1 and 5, which have an index selectivity of 18 and 15, resp. The binding constants of compounds 1-6 with human serum albumin (HSA) were determined by tryptophan fluorescence quenching, indicating moderate to strong interactions. The binding mode of the complexes to calf thymus (CT) DNA was explored by several techniques, which reveal that only the dphphen compound 6 causes distortions in the secondary and tertiary structures of DNA. The nature of the N-N co-ligand and the presence of the PPh3 and Hdpa ligands are features that can influence the binding affinity of the complexes by the biomols. and in the cytotoxic activity of the complexes. Overall, the complexes with diimine co-ligand are much more cytotoxic than compound 2 with the aliphatic diamine.

Compound(1762-34-1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

The Best Chemistry compound: 1762-34-1

Compound(1762-34-1)Application of 1762-34-1 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Qian, Bing-Feng; Gao, Yang; Liu, Xiao-Li; Wang, Jun-Ling; Jia, Ai-Quan; Zhang, Qian-Feng published the article 《Syntheses, structures and photocatalytic properties of ruthenium(II) complexes supported by a tetradentate cyclen ligand (cyclen = 1,4,7,10-tetraazacyclododecane)》. Keywords: tetradentate cyclen tetraazacyclododecane ruthenium nitrogen ligand complex preparation electrochem; crystal mol structure tetraazacyclododecane ruthenium nitrogen ligand complex.They researched the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1 ).Application of 1762-34-1. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:1762-34-1) here.

Treatment of [(cyclen)RuCl(dmso)]Cl (cyclen = 1,4,7,10-tetraazacyclododecane, dmso = dimethylsulfoxide, 1) with zinc powder in the presence of potassium hexafluorophosphate or sodium perchlorate in acetonitrile afforded the cationic complexes [(cyclen)Ru(dmso)(MeCN)]Q2 (Q = PF6 (2), ClO4 (3)). Interaction of 1, zinc powder and 4-tert-butylpyridine or pyridine in the presence of triethylamine and sodium perchlorate gave pyridine-ruthenium(II) complexes Na[(cyclen)Ru(dmso)(4-tBupy)](ClO4)3 (4) and [(cyclen)Ru(py)2](ClO4)2 (5), resp. While reactions of 1, zinc powder and 1,10-phenanthroline (phen) or 5,5′-dimethyl-2,2′-bipyridine (5,5′-Me2bpy) in the presence of triethylamine and potassium hexafluorophosphate gave bipyridine-ruthenium(II) complexes [(cyclen)Ru(phen)](PF6)2 (6) and [(cyclen)Ru(5,5′-Me2bpy)](PF6)2 (7), resp. Complexes 1-7 are characterized by IR, UV/Vis, NMR spectroscopies along with their electrochem. properties. The mol. structures of complexes 1-7 have been established by single-crystal x-ray diffraction. The photocatalytic properties of complexes 6 and 7 with a large π-electron delocalized system for the H2 evolution by water reduction were also investigated in the paper.

Compound(1762-34-1)Application of 1762-34-1 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem