Electric Literature of 22013-33-8, New Advances in Chemical Research in 2021. Redox catalysis has been broadly utilized in electrochemical synthesis due to its kinetic advantages over direct electrolysis. 22013-33-8, Name is 2,3-Dihydrobenzo[b][1,4]dioxin-6-amine. In a Article, once mentioned of 22013-33-8.
In this work the synthesis and the biological evaluation of some novel anilinoquinazoline derivatives carrying modifications in the quinazoline scaffold and in the aniline moiety were reported. Preliminary cytotoxicity studies identified three derivatives, carrying dioxygenated rings fused on the quinazoline portion and the biphenylamino substituent as aniline portion, as the most effective compounds. Further investigations revealed that these compounds exhibited antiproliferative activity on a wide panel of human tumor cell lines through the inhibition of both receptor and nonreceptor TKs. Furthermore, the compound bearing the dioxolane nucleus was also able to inhibit in vivo tumor growth. Molecular modeling of these compounds into kinase domain suggested that the phenyl group allows favorable interaction energies with the target proteins: this feature is favored by fused dioxygenated ring at the 6,7 positions, whereas free rotating functions do not allow the correct placement of the molecule, thus impairing the inhibitory potency. Finally, the biphenylamino derivatives, at noncytotoxic concentrations, acted as antiangiogenic agents both in in vitro and in vivo assays.
I am very proud of our efforts over the past few months and hope to 22013-33-8 help many people in the next few years. Electric Literature of 22013-33-8