Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Organometallics called Group 6 Metal Complexes as Electrocatalysts of CO2 Reduction: Strong Substituent Control of the Reduction Path of [Mo(η3-allyl)(CO)2(x,x’-dimethyl-2,2′-bipyridine)(NCS)] (x = 4-6), Author is Taylor, James O.; Veenstra, Florentine L. P.; Chippindale, Ann M.; Calhorda, Maria Jose; Hartl, Frantisek, which mentions a compound: 1762-34-1, SMILESS is CC1=CN=C(C=C1)C1=NC=C(C)C=C1, Molecular C12H12N2, Formula: C12H12N2.
[Mo(η3-allyl)(CO)2(x,x’-dmbipy)(NCS)] (dmbipy = dimethyl-2,2′-bipyridine; x = 4-6) were synthesized and their electrochem. reduction studied using combined cyclic voltammetry (CV) and variable-temperature spectroelectrochem. (IR/UV-visible SEC) in THF and butyronitrile (PrCN), at Au and Pt electrodes. The exptl. results, strongly supported by d. functional theory (DFT) calculations, indicate that the general cathodic path of these Group 6 organometallic complexes is closely related to that of the intensively studied class of Mn tricarbonyl α-diimine complexes, which, themselves, have recently been identified as important smart materials for catalytic CO2 reduction The di-Me substitution on the 2,2′-bipyridine ligand backbone has presented new insights into this emerging class of catalysts. For the 1st time, the 2e- reduced 5-coordinate anions [Mo(η3-allyl)(CO)2(x,x’-dmbipy)]- were directly observed with IR spectroelectrochem. (IR SEC). The role of steric and electronic effects in determining the reduction-induced reactivity was also studied. For the 6,6′-dmbipy, the primary 1e- reduced radical anions exert unusual stability, radically changing the follow-up cathodic path. The 5-coordinate anion [Mo(η3-allyl)(CO)2(6,6′-dmbipy)]- remains stable at low temperature in strongly coordinating butyronitrile and does not undergo dimerization at elevated temperature, in sharp contrast to reactive [Mo(η3-allyl)(CO)2(4,4′-dmbipy)]- that tends to dimerize in a reaction with the parent complex. The complex with the 5,5′-dmbipy ligand combines both types of reactivity. Under aprotic conditions, the different properties of [Mo(η3-allyl)(CO)2(x,x’-dmbipy)]- are also reflected in their reactivity toward CO2. Preliminary CV and IR SEC results reveal differences in the strength of CO2 coordination at the free axial position. Catalytic waves attributed to the generation of the 5-coordinate anions were observed using CV, but only a modest catalytic performance toward the production of formate was demonstrated by IR SEC. For 6,6′-dmbipy, a stronger catalytic effect was observed for the Au cathode, compared to Pt.
Here is a brief introduction to this compound(1762-34-1)Formula: C12H12N2, if you want to know about other compounds related to this compound(1762-34-1), you can read my other articles.