Why do aromatic interactions matter of compound: 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 5,5′-Dimethyl-2,2′-bipyridine(SMILESS: CC1=CN=C(C=C1)C1=NC=C(C)C=C1,cas:1762-34-1) is researched.Reference of 5-Fluoro-2-methylpyrimidin-4-amine. The article 《Dual Cobalt and Photoredox Catalysis Enabled Redox-Neutral Annulation of 2-Propynolphenols》 in relation to this compound, is published in Advanced Synthesis & Catalysis. Let’s take a look at the latest research on this compound (cas:1762-34-1).

A hydroxyl-assisted, organophotoredox/cobalt dual catalyzed annulation of 2-propynolphenols I [R1 = H, R2 = H, F, Cl, Br, MeO2C, Me; R1 = Cl, R2 = H; R1 = R2 = F; R3 = R4 = Me, Ph, 4-FC6H4, 3-F3CC6H4, etc.; R3 = Ph, R4 = Me, 4-ClC6H4, 2-FC6H4, 4-F3CC6H4, 2-thienyl, etc.; R3 = 4-FC6H4, R4 = 4-MeOC6H4; R3R4 = (CH2)5] to form 2-(hydroxymethyl)benzo[b]furans II has been developed by employing 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) as photosensitizer and CoCl2(PPh3)2/5,5′-dimethyl-2,2′-bipyridine as cobalt catalytic precursor. Various substrates and functional groups were tolerated. The practical applications of this reaction were further demonstrated by enlarged gram-scale and various derivations for complex heterocycles. Primary mechanistic studies suggested the involvement of cobalt-hydride mediated hydrogen atom transfer (HAT) process.

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Some scientific research about 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Two low-dimensional transition metal coordination polymers constructed from thiophene-2,5-dicarboxylic acid and N/O-donor ligands: Syntheses, structures and magnetic property. Author is Zou, Guo-Dong; Gong, Liao-Kuo; Liu, Li; Zhang, Qian; Zhao, Xiang-Hua.

Two low-dimensional transition metal coordination polymers (CPs), namely, Co(TDC)(Hdmea)2 (1), [Mn(TDC)(5,5′-dmbpy)(H2O)]n (2) (H2TDC = thiophene-2,5-dicarboxylic acid, Hdmea = N,N-dimethylethanolamine, 5,5′-dmbpy = 5,5′-dimethyl-2,2′-dipyridyl) have been synthesized and characterized. Compound 1 which is the first coordination compound containing the H2TDC and chelating Hdmea ligands so far features an isolated structure containing the centrosym. dinuclear [Co(TDC)(Hdmea)2]2 unit. Notably, the imidazole ligand as one of the reactants is not incorporated into the final structure of compound 1, but it is important to obtain the single crystals suitable for single-crystal X-ray diffraction anal. Compound 2 possesses a one-dimensional (1D) zigzag chain based on the [Mn(TDC)(5,5′-dmbpy)(H2O)] building unit. In addition, the magnetic property of compound 2 is investigated.

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

The origin of a common compound about 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Name: 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Zhou, Meng-Xue; Ning, Ren; Hu, Jin-Yong; Zhang, Jian-Jun; Wang, Da-Qi published an article about the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1,SMILESS:CC1=CN=C(C=C1)C1=NC=C(C)C=C1 ).Name: 5,5′-Dimethyl-2,2′-bipyridine. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1762-34-1) through the article.

Two novel lanthanide complexes, [Ln2(3,4-DClBA)6(5,5′-DM-2,2′-bipy)2(C2H5OH)(H2O)] (Ln = Gd (1), Tb (2)); 3,4-DClBA: 3,4-dichlorobenzoate; 5,5′-DM-2,2′-bipy: 5,5′-dimethyl-2,2′-bipyridine have been hydrothermally synthesized and structurally characterized by elemental anal., IR spectrum, thermal anal. and single x-ray diffraction techniques. The binuclear complexes 1-2 are isomorphous and crystallize in the triclinic crystal system and P1̅ space group, and each metal center is eight-coordinated with distorted square antiprismatic mol. geometry. The structure of this type of complex is unique in that the solvent ethanol mol. participates in the coordination. Complexes 1-2 are stitched together via π-π stacking interactions and hydrogen bonding interactions to form the 1D, 2D supramol. structures. The thermal decomposition mechanisms of two complexes were obtained by TG-DSC/FTIR techniques. The molar heat capacities of the complexes 1 and 2 are measured by a DSC instrument over the temperature range from 255.15 to 323.15 K and thermodn. functions were calculated by fitted polynomial and thermodn. equations. The luminescence studies demonstrate that complex 2 exhibits the characteristic emission of Tb3+ ion (5D4 → 7F6-3).

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Name: 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

A small discovery about 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Computed Properties of C12H12N2, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about The Active Center of Co-N-C Electrocatalysts for the Selective Reduction of CO2 to CO Using a Nafion-H Electrolyte in the Gas Phase, the main research direction is cobalt complex electroreduction catalyst carbon dioxide monoxide.Computed Properties of C12H12N2.

To contribute a solution for the global warming problem, the selective electrochem. reduction of CO2 to CO was studied in the gas phase using a [CO2(g), Co-N-C cathode | Nafion-H | Pt/C anode, H2/water] system without using carbonate solutions The Co-N-C electrocatalysts were synthesized by partial pyrolysis of precursors in inert gas, which were prepared from various N-bidentate ligands, Co(NO3)2, and Ketjenblack (KB). The most active electrocatalyst was Co-(4,4′-dimethyl-2,2′-bipyridine)/KB pyrolyzed at 673 K, denoted Co-4,4′-dmbpy/KB(673K). A high performance of CO formation (331 μmol h-1 cm-2, 217 TOF h-1) at 0.020 A cm-2 with 78% current efficiency was obtained at -0.75 V (SHE) and 273 K under strong acidic conditions of Nafion-H. Characterization studies using extended X-ray absorption fine structure (EXAFS), XPS, transmission electron microscopy-energy-dispersive X-ray (TEM-EDX), X-ray diffraction (XRD), and temperature-programmed desorption with mass spectrometry (TPD-MS) indicated the active site as Co coordinated with four N atoms bonding the surface of KB, abbreviated Co-N4-Cx structure. A model of the reduction mechanism of CO2 on the active site was proposed.

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Computed Properties of C12H12N2, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Little discovery in the laboratory: a new route for 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Related Products of 1762-34-1, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Zhang, Bo; Li, Wei-An; Li, Jun; Xu, Yu-Ping; Xu, Ya-Ru; Wang, Wen-Hao; Zou, Guo-Dong published an article about the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1,SMILESS:CC1=CN=C(C=C1)C1=NC=C(C)C=C1 ).Related Products of 1762-34-1. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1762-34-1) through the article.

Using the transition metal complex as templating agent, a new discrete iodoargentate compound, [Ni(5,5′-dmbpy)3]2Ag4.9I8.9·4H2O (5,5′-dmbpy = 5,5′-dimethyl-2,2′-bipyridine) (1) was solvothermally prepared and structurally characterized. Compound 1 has a discrete anionic moiety of [Ag4.9I8.9]4- constructed by three types of fundamental building units, i.e., [AgI2] dumbbell, [AgI3] triangle and [AgI4] tetrahedron. It possesses a band gap of 2.07 eV, and exhibits fascinating photoelec. property with the photocurrent value of around 0.5μA/cm2. Its thermal stability and Hirshfeld surface analyses were also investigated.

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Related Products of 1762-34-1, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

New learning discoveries about 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Application of 1762-34-1, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 1762-34-1, is researched, SMILESS is CC1=CN=C(C=C1)C1=NC=C(C)C=C1, Molecular C12H12N2Journal, Inorganica Chimica Acta called Syntheses, molecular structures, and spectroscopic properties of manganese(II)/(III) complexes with tetraphenylimidodiphosphinato and bi-pyridine or salicylaldehyde ligands, Author is Qian, Zhe; Zhang, Ying; Jia, Ai-Quan; Shi, Hua-Tian; Zhang, Qian-Feng, the main research direction is manganese tetraphenylimidodiphosphinato bipyridine salicylaldehyde complex preparation crystal structure; cyclic voltammetry manganese tetraphenylimidodiphosphinato bipyridine salicylaldehyde complex.Application of 1762-34-1.

Treatment of [Mn(CH3COO)2·4H2O] with two equivalent of K[N(Ph2PO)2] in the presence of one equivalent of 2,2′-bipyridine (bpy) or 5,5′-dimethyl-2,2′-bipyridine(dmbpy) in ethanol gave the mono-nuclear manganese(II) complexes [Mn{η1-O-N(Ph2PO)2}{N(Ph2PO)2}(EtOH)(bpy)] (1) and [Mn{N(Ph2PO)2}2(dmbpy)] (2), resp. Interaction of [Mn(CH3COO)2·4H2O], K[N(Ph2PO)2] and salicylaldehyde or 5-chlorosalicylaldehyde or 3,5-dibromosalicylaldehyde in the presence of triethylamine in methanol gave the bi-nuclear manganese(II) complexes [Mn2{N(Ph2PO)2}2(μ,η2-O,O’-Sal)2(MeOH)2] (3) and [Mn2{N(Ph2PO)2}2(μ,η2-O,O’-5-Cl-Sal)2(MeOH)2] (4), and a tetra-nuclear manganese(II)/(III) complex [Mn4{N(Ph2PO)2}2(μ,η2-O,O’-3,5-Br2-Sal’)2(MeOH)4(μ-OMe)2(μ3-OMe)2] (5), resp. All complexes were characterized by IR and UV spectroscopy, their mol. structures were unambiguously established by single crystal x-ray diffraction. The electrochem. properties of complexes 1-5 were also studied.

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Application of 1762-34-1, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

What unique challenges do researchers face in 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Recommanded Product: 1762-34-1, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Bu, Ran; Zhang, Lin; Liu, Xiao-Yan; Yang, Shuai-Liang; Li, Gen; Gao, En-Qing published an article about the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1,SMILESS:CC1=CN=C(C=C1)C1=NC=C(C)C=C1 ).Recommanded Product: 1762-34-1. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1762-34-1) through the article.

The recently emerging vinylene-linked covalent organic frameworks (VCOFs) stand out from other COFs with exceptional chem. stability and favorable light-emitting properties, promising sensing applications for acids/bases or in strong acidic/basic conditions. Here we systematically investigated the reversible color and fluorescent response of a VCOF functionalized with pyridyl groups to acids/pH. The COF was synthesized with a record surface area for VCOFs and shows reversible hydrochromic and acidochromic behaviors and concomitant fluorescence quenching. The mechanisms were probed with systematical exptl. comparison with relevant COFs and model mols. in combination with orbital anal. The response is related to significant electronic changes in the ground and photoexcited states as a result of protonation or hydrogen bonding at pyridyl sites. The COF in aqueous dispersion displays a reversible fluorescence transition with pH change, which follows the Hill equation for multisite protonation. The COF-modified test paper shows immediate and remarkable color change and fluorescence turn-off/on when alternately exposed to HCl and NH3 gases. The work illustrates the great potential of developing highly robust sensory COFs through the vinylene approach.

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Recommanded Product: 1762-34-1, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Discover the magic of the 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Name: 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 5,5′-Dimethyl-2,2′-bipyridine(SMILESS: CC1=CN=C(C=C1)C1=NC=C(C)C=C1,cas:1762-34-1) is researched.HPLC of Formula: 36620-11-8. The article 《An aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst》 in relation to this compound, is published in RSC Advances. Let’s take a look at the latest research on this compound (cas:1762-34-1).

An aerobic oxidation of primary and secondary alcs. RCH2OH (R = 2-methylphenyl, cyclohexyl, naphthalen-1-yl, pyridin-4-yl, etc.) to resp. aldehydes RCHO and ketones RCO using a bipyridyl-cinchona alkaloid based palladium catalytic system (PdAc-5) I·2Br using oxygen at moderate pressure was reported. The PdAc-5 catalyst was analyzed using SEM, EDAX, and XPS anal. The above catalytic system is used in experiments for different oxidation systems which include different solvents, additives, and bases which are cheap, robust, non-toxic, and com. available on the industrial bench. The obtained products are quite appreciable in both yield and selectivity (70-85%). In addition, numerous important studies, such as comparisons with various com. catalysts, solvent systems, mixture of solvents, and catalyst mole%, were conducted using PdAc-5. The synthetic strategy of oxidation of alc. into carbonyl compounds was well established and all the products were analyzed.

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Name: 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

You Should Know Something about 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Kaur, Harpreet; Walia, Sidharth; Karmakar, Anirban; Krishnan, Venkata; Koner, Rik Rani researched the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1 ).Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine.They published the article 《Water-stable Zn-based metal-organic framework with hydrophilic-hydrophobic surface for selective adsorption and sensitive detection of oxo-anions and pesticides in aqueous medium》 about this compound( cas:1762-34-1 ) in Journal of Environmental Chemical Engineering. Keywords: zinc metal organic framework hydrophilic hydrophobic oxoanion pesticide detection. We’ll tell you more about this compound (cas:1762-34-1).

Given the importance of surface-functionalized materials with improved adsorption and detection properties for targeted applications, we report herein the design and development of a water-stable luminescent Zn-based metal-organic framework (Zn-MOF) with the hydrophobic-hydrophilic surface property. The developed luminescent Zn(II)-MOF {[Zn(PA2-)(dmbpy)](DMF)}n was synthesized via a solvothermal method using pamoic acid (PA) and 5,5′-dimethyl-2,2′-bipyridine (dmbpy) with free functional groups (hydroxyl and Me groups). Careful single-crystal structure anal. revealed a 3-dimensional hydrogen-bonded network with a one-dimensional channel and functionalized surface. The surface functionalization was achieved through rational choice of ligands bearing Me and hydroxyl groups as suitable hydrophobic and hydrophilic functionalities resp., leading to a stable MOF in the aqueous medium. The MOF was used as an adsorbent for selective adsorption of monovalent permanganate anion (MnO4-) over other polyvalent oxo-anions as well as an optical platform for the detection of oxo-anions (permanganate (MnO-4), dichromate (Cr2O72-) and chromate (CrO42-)) and pesticide (2,6-dichloro-4-nitroaniline (2,6-DCNA)) in the aqueous medium. Overall, a combination of luminescent nature and hydrophilic-hydrophobic surface property makes the developed Zn-MOF an interesting platform for environmental application.

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

A small discovery about 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Name: 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 1762-34-1, is researched, SMILESS is CC1=CN=C(C=C1)C1=NC=C(C)C=C1, Molecular C12H12N2Journal, Article, ACS Applied Materials & Interfaces called Synthesis and Acid-Responsive Properties of a Highly Porous Vinylene-Linked Covalent Organic Framework, Author is Bu, Ran; Zhang, Lin; Liu, Xiao-Yan; Yang, Shuai-Liang; Li, Gen; Gao, En-Qing, the main research direction is acid responsive porous vinylene covalent organic framework; Hill equation; acid response; acidochromic; covalent organic framework; fluorescence; gas sensor.Name: 5,5′-Dimethyl-2,2′-bipyridine.

The recently emerging vinylene-linked covalent organic frameworks (VCOFs) stand out from other COFs with exceptional chem. stability and favorable light-emitting properties, promising sensing applications for acids/bases or in strong acidic/basic conditions. Here we systematically investigated the reversible color and fluorescent response of a VCOF functionalized with pyridyl groups to acids/pH. The COF was synthesized with a record surface area for VCOFs and shows reversible hydrochromic and acidochromic behaviors and concomitant fluorescence quenching. The mechanisms were probed with systematical exptl. comparison with relevant COFs and model mols. in combination with orbital anal. The response is related to significant electronic changes in the ground and photoexcited states as a result of protonation or hydrogen bonding at pyridyl sites. The COF in aqueous dispersion displays a reversible fluorescence transition with pH change, which follows the Hill equation for multisite protonation. The COF-modified test paper shows immediate and remarkable color change and fluorescence turn-off/on when alternately exposed to HCl and NH3 gases. The work illustrates the great potential of developing highly robust sensory COFs through the vinylene approach.

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Name: 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem