What unique challenges do researchers face in 1762-34-1

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)SDS of cas: 1762-34-1, illustrating the importance and wide applicability of this compound(1762-34-1).

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Article, Research Support, Non-U.S. Gov’t, BioMetals called A binuclear iron(III) complex of 5,5′-dimethyl-2,2′-bipyridine as cytotoxic agent, Author is Kondori, Tahere; Akbarzadeh-T, Niloufar; Ghaznavi, Habib; Karimi, Zeinab; Shahraki, Jafar; Sheervalilou, Roghayeh; Shahraki, Omolbanin, which mentions a compound: 1762-34-1, SMILESS is CC1=CN=C(C=C1)C1=NC=C(C)C=C1, Molecular C12H12N2, SDS of cas: 1762-34-1.

The binuclear iron(III) complex (1), namely, {[Fe(5,5′-dmbpy)2(OH2)]2(O)}(NO3)4 with a distorted octahedral coordination, formed by four nitrogen and two oxygen atoms, was previously reported by our team. In this study the DNA-binding and cytotoxicity evaluation for target complex were studied. The results indicated strong cytotoxicity activity against A549 cells comparable to cisplatin values. The binding interaction between complex 1 and FS-DNA was investigated by UV-Vis, fluorescence spectroscopy, and gel electrophoresis at physiol. pH (7.2). The DNA binding investigation has shown groove binding interactions with complex 1, therefore the hydrogen binding plays an important role in the interaction of DNA with complex 1. The calculated thermodn. parameters (ΔH°, ΔS° and ΔG°) show that hydrogen bonding and Vander-Waals forces have an important function in Fe(III) complex-DNA interaction. Moreover, DNA cleavage was studied using agarose gel electrophoresis. Viscosity measurements illustrated that relative viscosity of DNA was unchanged with the adding concentrations of Fe(III) complex. Mol. docking simulation results confirmed the spectroscopic and viscosity titration outcomes.

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)SDS of cas: 1762-34-1, illustrating the importance and wide applicability of this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Research on new synthetic routes about 1762-34-1

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Computed Properties of C12H12N2, illustrating the importance and wide applicability of this compound(1762-34-1).

Zhang, Sheng; Mo, Wenjiao; Zhang, Jiangwei; Zhang, Zengqi; Yin, Bing; Hu, Dengwei; Chen, Sanping published an article about the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1,SMILESS:CC1=CN=C(C=C1)C1=NC=C(C)C=C1 ).Computed Properties of C12H12N2. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1762-34-1) through the article.

A series of mononuclear DyIII compounds, [Dy(tmpd)3(4,4′-dmpy)] (1), [Dy(tffb)3(4,4′-dmpy)] (2), [Dy(tffb)3(5,5′-dmpy)] (3), and [Dy(tmpd)3(5,5′-dmpy)] () [tmpd = 4,4,4-trifluoro-1-(4-methoxyphenyl)-1,3-butanedione, tffb = 4,4,4-trifluoro-1-(4-fluorophenyl)-1,3-butanedione, 4,4′-dmpy = 4,4′-dimethyl-2,2′-bipyridyl, and 5,5′-dmpy = 5,5′-dimethyl-2,2′-bipyridyl], have been synthesized by modifying β-diketonate ligands and capping N-donor co-ligands. DyIII ions in 1-4 possess N2O6 octacoordinated environments. Compounds 1 and 2 exhibit distorted trigonal dodecahedron configurations, while 3 and 4 display distorted square antiprismatic configurations. Systematic investigations of the a.c. measurements indicate the different magnetic relaxation dynamics with energy barriers (Ueff) of 66 K (1, 45 cm-1), 189 K, (2, 131 cm-1), 115 K (3, 79 cm-1), and 205 K (4, 142 cm-1). To deeply understand their different magnetic behaviors, the magnetic anisotropies of 1-4 were studied by ab initio calculations From ab initio calculations, the energies of the first excited state (KD1) are consistent with the exptl. Ueff under zero d.c. field. Compound 4 presents the largest Ueff because of the smallest gX,Y and μqTM as well as the most strong axial crystal field parameters (CFPs) among compounds 1-4. The M vs. H data exhibit butterfly-shaped hysteresis loops at 2 K for 1-4. The different coordination geometries, the magnetic dynamics, the electrostatic repulsion, and CFPs result from the different substituent effects of ligands, including the electronic effect, the steric effect, and the positions of substituted groups. The different coordination geometries, the magnetic dynamics, the electrostatic repulsion, and the crystal field parameters result from the different substituent effects of ligands, including the electronic effect, the steric effect, and the positions of substituted groups.

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Computed Properties of C12H12N2, illustrating the importance and wide applicability of this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

New downstream synthetic route of 1762-34-1

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Formula: C12H12N2, illustrating the importance and wide applicability of this compound(1762-34-1).

Formula: C12H12N2. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Mechanism of Formic Acid Disproportionation Catalyzed by an Iridium Complex Immobilized on Bipyridine-Periodic Mesoporous Organosilica: A Case Study based on Kinetics Analysis. Author is Yamaguchi, Sho; Hashimoto, Shunsuke.

This work investigated the kinetics of formic acid (FA) disproportionation using an Ir complex immobilized on bipyridine-periodic mesoporous organosilica (BPy-PMO). The selectivity for methanol (MeOH) is increased using this catalyst compared to conventional homogeneous Ir complexes. This enhanced selectivity is attributed to the retention of H2 and CO2 generated by the competing FA dehydrogenation in PMO mesochannels having a high aspect ratio. However, no direct evidence for this process was previously obtained. The present work clarified the unique catalysis mechanism associated with a PMO catalyst exhibiting higher MeOH selectivity based on a hypothesis that the generation of MeOH via FA hydrogenation is promoted by the confinement of H2 in the PMO pores. The results obtained from the present kinetics study and data regarding H2 diffusion in the PMO pores strongly support this hypothesis.

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Formula: C12H12N2, illustrating the importance and wide applicability of this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

An update on the compound challenge: 1762-34-1

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)SDS of cas: 1762-34-1, illustrating the importance and wide applicability of this compound(1762-34-1).

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Two nonporous MOFs with uncoordinated carboxylate groups: Fillers for enhancing the proton conductivities of nafion membrane, the main research direction is nickel cadmium bipyridine isophthalate MOF preparation crystal structure; thermal stability nickel cadmium bipyridine isophthalate MOF; proton conductivity nickel cadmium bipyridine isophthalate MOF composite membrane.SDS of cas: 1762-34-1.

Two nonporous MOFs [Ni(L)0.5 (Mbpy)(H2O)2]2 (1) and [Cd(H2L)(Mbpy)]n (2) (H4L = 5,5′-(butane-1,4-diylbis (oxy))diisophthalic acid, Mbpy = 5,5′-dimethyl-2,2′-bipyridine) were obtained through hydrothermal reactions under different pH values reaction condition. Structure analyses reveal that there are uncoordinated deprotonated and protonated carboxylate groups in compounds 1 and 2, resp., which are confirmed by IR spectra. The XRD and TG studies indicate that both of compounds exhibit good water and thermal stability. The proton conductivities of the Nafion membrane doped by compounds 1 and 2 were studied. Compound 2 can enhance the proton conductivity of the composite membrane ∼29% higher than that of pure Nafion. The water uptakes of 1/Nafion and 2/Nafion composite membrane are similar and slightly higher than that of pure Nafion membrane. The apparently high proton conductivity of 2/Nafion membrane should be attributed to the high proton d. of 2 framework, which is resulted by the protonated uncoordinated carboxylate acid groups.

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)SDS of cas: 1762-34-1, illustrating the importance and wide applicability of this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

The influence of catalyst in reaction 1762-34-1

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Formula: C12H12N2, illustrating the importance and wide applicability of this compound(1762-34-1).

Formula: C12H12N2. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Synthesis and characterization of Lanthanum(III) complexes containing 4,4,4-trifluoro-1-(naphthalen-2yl)butane-1,3-dionate. Author is Mautner, Franz A.; Bierbaumer, Florian; Gyurkac, Marcell; Fischer, Roland C.; Torvisco, Ana; Massoud, Salah S.; Vicente, Ramon.

Seven La(III) complexes with the β-diketonate anion 4,4,4-trifluoro-1-(2-naphthyl)butane-1,3-dionato(1-) (ntfa) have been synthesized, namely: [La(ntfa)3(MeOH)3] (1a), [La(ntfa)3(H2O)2(EtOH)](EtOH) (1b), [La(ntfa)3(bipy)2] (2), [La(ntfa)3(Me2bipy)] (3), [La(ntfa)3(terpy)] (4), (NEt4)[La(ntfa)4] (5) and [La(ntfa)4Na(H2O)(EtOH)(Methyl-β-naphthylketone)] (6), where bipy = bipyridine, Me2bipy = 5,5′-dimethyl-bipyridine, terpy = terpyridine, NEt4+ = tetraethylammonium ion and structurally characterized. The tris-β-diketonate compounds 1a,b, 2-4 form neutral monomeric complexes with C. N. nine for 1a, 1b and 4, eight for 3, and ten in case of 2. The tetrakis-β-diketonato complexes 5 and 6 have coordination number eight.

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Formula: C12H12N2, illustrating the importance and wide applicability of this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

The origin of a common compound about 1762-34-1

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Category: benzodioxans, illustrating the importance and wide applicability of this compound(1762-34-1).

Category: benzodioxans. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about High sensitivity and selectivity of aminoantipyrine schiff base for recognition of Fe2+. Author is Chen, Sheng-tian; Zhang, Yu; Zhao, Jian-ying; Ma, Kui-rong; Li, Rong-qing; Tang, Guo-dong.

An aminoantipyrine based chemosensor, (E)-1,5-dimethyl-4-((2-(4-methylpyridin-2-yl)pyridin-4-yl)methyleneamino)-2-phenyl-1,2-dihydropyrazol-3-one(L), derived from 4-aminoantipyrine and 2-(4-methylpyridin-2-yl) isonicotinaldehyde, was synthesized and the optical and metal sensing properties were investigated. The chemosensor L showed a selective colorimetric sensing ability for Fe2+ by changing colors from pale yellow to deep red in water-ethanol (9:1, V/V) medium, which facilitates the ‘naked-eye’ recognition of Fe2+ from other examined metal ions. The complex stoichiometry of Fe2+ to L(1:3,[FeL3]2+) was obtained by Job’s method. The association constant was determined to be 3.70×1021 L3·mol-3. The present results indicate that the chemosensor L could be used as a selective, sensitive colorimetric sensor for Fe2+.

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Category: benzodioxans, illustrating the importance and wide applicability of this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Properties and Exciting Facts About 1762-34-1

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Computed Properties of C12H12N2, illustrating the importance and wide applicability of this compound(1762-34-1).

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 1762-34-1, is researched, SMILESS is CC1=CN=C(C=C1)C1=NC=C(C)C=C1, Molecular C12H12N2Journal, Inorganica Chimica Acta called Near-UV-excitable, green-emitting Tb3+-based complexes, Author is Assuncao, Israel P.; Bredol, Michael; Kasprzycka, Ewa; Kynast, Ulrich H.; Lezhnina, Marina, the main research direction is terbium fenamato derivative complex near UV excitable green emitting.Computed Properties of C12H12N2.

While numerous Eu3+ complexes are known now that can efficiently be exploited at 350-400 nm excitation range, corresponding green Tb3+ emitter complexes are hard to find. Tb3+ salts of fenamic acid and derivatives thereof are interesting candidates for applications using near-UV excitation: on addnl. co-coordination with e.g. 5,5′-dimethyl-2,2′-bipyridine, excitation maximum at 380 nm, at the same time maintaining high efficiencies, can be accomplished. Such coordination compounds hold the promise of being useful as versatile marker mols. in a variety of soft chem. environments.

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Computed Properties of C12H12N2, illustrating the importance and wide applicability of this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Why do aromatic interactions matter of compound: 1762-34-1

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Category: benzodioxans, illustrating the importance and wide applicability of this compound(1762-34-1).

Category: benzodioxans. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Two low-dimensional transition metal coordination polymers constructed from thiophene-2,5-dicarboxylic acid and N/O-donor ligands: Syntheses, structures and magnetic property. Author is Zou, Guo-Dong; Gong, Liao-Kuo; Liu, Li; Zhang, Qian; Zhao, Xiang-Hua.

Two low-dimensional transition metal coordination polymers (CPs), namely, Co(TDC)(Hdmea)2 (1), [Mn(TDC)(5,5′-dmbpy)(H2O)]n (2) (H2TDC = thiophene-2,5-dicarboxylic acid, Hdmea = N,N-dimethylethanolamine, 5,5′-dmbpy = 5,5′-dimethyl-2,2′-dipyridyl) have been synthesized and characterized. Compound 1 which is the first coordination compound containing the H2TDC and chelating Hdmea ligands so far features an isolated structure containing the centrosym. dinuclear [Co(TDC)(Hdmea)2]2 unit. Notably, the imidazole ligand as one of the reactants is not incorporated into the final structure of compound 1, but it is important to obtain the single crystals suitable for single-crystal X-ray diffraction anal. Compound 2 possesses a one-dimensional (1D) zigzag chain based on the [Mn(TDC)(5,5′-dmbpy)(H2O)] building unit. In addition, the magnetic property of compound 2 is investigated.

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Category: benzodioxans, illustrating the importance and wide applicability of this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

The important role of 1762-34-1

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Reference of 5,5′-Dimethyl-2,2′-bipyridine, illustrating the importance and wide applicability of this compound(1762-34-1).

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Construction of lanthanide complexes based on 3,4-dichlorobenzoic acid and 5,5′-dimethyl-2,2′-bipyridine: Supramolecular structures, thermodynamic properties and luminescent behaviors, the main research direction is terbium gadolinium dichlorobenzoate dimethylbipyridine supramol preparation thermodn luminescence; crystal mol structure terbium gadolinium dichlorobenzoate dimethylbipyridine supramol complex.Reference of 5,5′-Dimethyl-2,2′-bipyridine.

Two novel lanthanide complexes, [Ln2(3,4-DClBA)6(5,5′-DM-2,2′-bipy)2(C2H5OH)(H2O)] (Ln = Gd (1), Tb (2)); 3,4-DClBA: 3,4-dichlorobenzoate; 5,5′-DM-2,2′-bipy: 5,5′-dimethyl-2,2′-bipyridine have been hydrothermally synthesized and structurally characterized by elemental anal., IR spectrum, thermal anal. and single x-ray diffraction techniques. The binuclear complexes 1-2 are isomorphous and crystallize in the triclinic crystal system and P1̅ space group, and each metal center is eight-coordinated with distorted square antiprismatic mol. geometry. The structure of this type of complex is unique in that the solvent ethanol mol. participates in the coordination. Complexes 1-2 are stitched together via π-π stacking interactions and hydrogen bonding interactions to form the 1D, 2D supramol. structures. The thermal decomposition mechanisms of two complexes were obtained by TG-DSC/FTIR techniques. The molar heat capacities of the complexes 1 and 2 are measured by a DSC instrument over the temperature range from 255.15 to 323.15 K and thermodn. functions were calculated by fitted polynomial and thermodn. equations. The luminescence studies demonstrate that complex 2 exhibits the characteristic emission of Tb3+ ion (5D4 → 7F6-3).

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Reference of 5,5′-Dimethyl-2,2′-bipyridine, illustrating the importance and wide applicability of this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

A small discovery about 1762-34-1

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Related Products of 1762-34-1, illustrating the importance and wide applicability of this compound(1762-34-1).

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Self-supported rhodium catalysts based on a microporous metal-organic framework for polymerization of phenylacetylene and its derivatives, published in 2020, which mentions a compound: 1762-34-1, Name is 5,5′-Dimethyl-2,2′-bipyridine, Molecular C12H12N2, Related Products of 1762-34-1.

A series of heterogeneous metal-organic framework (MOF)-supported rhodium (Rh) hybrid catalysts with varying amounts of Rh are first applied to the coordination polymerization of phenylacetylene and its derivatives with or without cocatalysts in different organic solvents under a nitrogen atm. or in water media under an air atm. In comparison with the known homogeneous and heterogeneous Rh catalysts, these MOF-supported Rh catalysts exhibit not only a channel confinement effect on the polymer mol. weight distribution but also a more remarkable cooperation effect, polar solvent acceleration effect, “”on water”” effect, and cocatalyst acceleration effect on the catalytic activity. As a result, these heterogeneous Rh catalysts have the advantages of an extremely high activity of up to 1.5 x 107 g molRh-1 h-1, cis-selectivity of up to 99%, and reusability of up to 10 times, affording cis-transoidal PPAs and their functional derivatives having single-handed helical conformation or aggregation-induced emission properties with moderate mol. weights and narrow mol. weight distributions. As far as we are aware, such extremely efficient Rh catalysts as well as multiple reusable heterogeneous Rh catalysts have never been reported.

In addition to the literature in the link below, there is a lot of literature about this compound(5,5′-Dimethyl-2,2′-bipyridine)Related Products of 1762-34-1, illustrating the importance and wide applicability of this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem