Chemical Research in 1762-34-1

Compound(1762-34-1)Product Details of 1762-34-1 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 1762-34-1, is researched, SMILESS is CC1=CN=C(C=C1)C1=NC=C(C)C=C1, Molecular C12H12N2Journal, Journal of Molecular Liquids called Dimeric imidazolium ionic liquids connected by bipyridiyl as a corrosion inhibitor for N80 carbon steel in HCl, Author is Zhang, Juantao; Kong, Minjian; Feng, Jiangtao; Yin, Chengxian; Li, Danping; Fan, Lei; Chen, Qibin; Liu, Honglai, the main research direction is dimeric imidazolium ionic liquid bipyridiyl carbon steel corrosion inhibitor.Product Details of 1762-34-1.

A new type of the dimeric imidazolium-type amphiphile, BDBCmIB (m = 1, 4 and 8), was synthesized using the bipyridiyl as the spacer, and its inhibition performance and mechanism for the corrosion of N80 carbon steel in 1.0 mol·L-1 HCl were evaluated using chem. and electrochem. measurements, surface analyses and d. functional theory (DFT) calculations Results show that the inhibition efficiency of BDBCmIBs increases with their concentrations and the length of tail chains. BDBC8IB exhibits the best inhibition performance among them and its inhibition efficiency almost exceeds 90% in a wide concentration range from 1.0 × 10-6 to 5.0 × 10-4 mol·L-1 at 25.0 °C, which attains the maximum over 95% at 5.0 × 10-4 mol·L-1. Moreover, three BDBCmIBs all display the high inhibition efficiency at 5.0 × 10-4 mol·L-1, nearly exceeding 90%, in the temperature range from 25.0 to 55.0 °C. As a mixed-type inhibitor, BDBCmIBs can retard both cathodic hydrogen evolution and anodic metal dissolution processes, since BDBCmIB mols. bear the imidazolium-based heterocycle with the electron-donating ability and the bipyridine with the electron-accepting ability, thereby facilitating the formation of a protective film on the surface of N80 carbon steel via electrostatic interactions, coordinated and back-donating bonds. The adsorption of BDBCmIBs obeys the Langmuir isothermal model. Our finding demonstrates that the introduction of the bipyridiyl at the spacer does favor improving the inhibition efficiency of such dimeric imidazolium-type amphiphiles, and meanwhile, the proper increase in the number of carbon atoms in the substituents on the imidazole rings can also enhance the inhibition efficiency.

Compound(1762-34-1)Product Details of 1762-34-1 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Discovery of 1762-34-1

Compound(1762-34-1)Safety of 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Safety of 5,5′-Dimethyl-2,2′-bipyridine. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about The laser-induced potential jump: A method for rapid electron injection into oxidoreductase enzymes. Author is Sanchez, Monica L. K.; Konecny, Sara E.; Narehood, Sarah M.; Reijerse, Edward J.; Lubitz, Wolfgang; Birrell, James A.; Dyer, R. Brian.

Oxidoreductase enzymes often perform technol. useful chem. transformations using abundant metal cofactors with high efficiency under ambient conditions. The understanding of the catalytic mechanism of these enzymes is, however, highly dependent on the availability of well-characterized and optimized time-resolved anal. techniques. We have developed an approach for rapidly injecting electrons into a catalytic system using a photoactivated nanomaterial in combination with a range of redox mediators to produce a potential jump in solution, which then initiates turnover via electron transfer (ET) to the catalyst. The ET events at the nanomaterial-mediator-catalyst interfaces are, however, highly sensitive to the exptl. conditions such as photon flux, relative concentrations of system components, and pH. Here, we present a systematic optimization of these exptl. parameters for a specific catalytic system, namely, [FeFe] hydrogenase from Chlamydomonas reinhardtii (CrHydA1). The developed strategies can, however, be applied in the study of a wide variety of oxidoreductase enzymes. Our potential jump system consists of CdSe/CdS core-shell nanorods as a photosensitizer and a series of substituted bipyridinium salts as mediators with redox potentials in the range from -550 to -670 mV (vs. SHE). With these components, we screened the effect of pH, mediator concentration, protein concentration, photosensitizer concentration, and photon flux on steady-state photoreduction and hydrogen production as well as ET and potential jump efficiency. By manipulating these exptl. conditions, we show the potential of simple modifications to improve the tunability of the potential jump for application to study oxidoreductases.

Compound(1762-34-1)Safety of 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Decrypt The Mystery Of 1762-34-1

Compound(1762-34-1)HPLC of Formula: 1762-34-1 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Zou, Guo-Dong; Gong, Liao-Kuo; Liu, Li; Zhang, Qian; Zhao, Xiang-Hua published the article 《Two low-dimensional transition metal coordination polymers constructed from thiophene-2,5-dicarboxylic acid and N/O-donor ligands: Syntheses, structures and magnetic property》. Keywords: thiophenedicarboxylic acid transition metal coordination polymer preparation structure magnetic.They researched the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1 ).HPLC of Formula: 1762-34-1. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:1762-34-1) here.

Two low-dimensional transition metal coordination polymers (CPs), namely, Co(TDC)(Hdmea)2 (1), [Mn(TDC)(5,5′-dmbpy)(H2O)]n (2) (H2TDC = thiophene-2,5-dicarboxylic acid, Hdmea = N,N-dimethylethanolamine, 5,5′-dmbpy = 5,5′-dimethyl-2,2′-dipyridyl) have been synthesized and characterized. Compound 1 which is the first coordination compound containing the H2TDC and chelating Hdmea ligands so far features an isolated structure containing the centrosym. dinuclear [Co(TDC)(Hdmea)2]2 unit. Notably, the imidazole ligand as one of the reactants is not incorporated into the final structure of compound 1, but it is important to obtain the single crystals suitable for single-crystal X-ray diffraction anal. Compound 2 possesses a one-dimensional (1D) zigzag chain based on the [Mn(TDC)(5,5′-dmbpy)(H2O)] building unit. In addition, the magnetic property of compound 2 is investigated.

Compound(1762-34-1)HPLC of Formula: 1762-34-1 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Machine Learning in Chemistry about 1762-34-1

Compound(1762-34-1)Safety of 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Isoxazole Strategy for the Synthesis of 2,2′-Bipyridine Ligands: Symmetrical and Unsymmetrical 6,6′-Binicotinates, 2,2′-Bipyridine-5-carboxylates, and Their Metal Complexes.Safety of 5,5′-Dimethyl-2,2′-bipyridine.

An effective strategy was developed for the synthesis of new 2,2′-bipyridine ligands, sym. and unsym. 6,6′-binicotinates, and 2,2′-bipyridine-5-carboxylates, from 4-propargylisoxazoles. The synthesis of sym. 2,2′-disubstituted 6,6′-binicotinates was achieved using the Eglinton reaction of 5-methoxy-4-(prop-2-yn-1-yl)isoxazoles with Cu(OAc)2, followed by Fe(NTf2)2/Au(NTf2)tBuXPhos-catalyzed isomerization of the so-formed mixture of isoxazole/azirine-substituted biacetylenic intermediates. Unsym. 2,2′-disubstituted 6,6′-binicotinates were prepared via a copper-free Sonogashira coupling of 5-methoxy-4-(prop-2-yn-1-yl)isoxazoles with 6-bromonicotinates to give Me 6-(3-(5-methoxyisoxazol-4-yl)prop-1-ynyl)pyridine-3-carboxylates, followed by a transformation of the propargylisoxazole moiety of the adduct into the pyridine fragment under Fe(II)/Au(I) relay catalysis conditions. 6-(Pyrid-2-yl)nicotinates were synthesized by a Stille-type coupling of 2-(tributylstannyl)pyridine with 6-bromonicotinates. Several cyclopalladated complexes of a new series of 6,6′-binicotinates and 2,2′-bipyridine-5-carboxylates and the homoleptic Cu(I) complex were synthesized in high yields.

Compound(1762-34-1)Safety of 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Derivation of elementary reaction about 1762-34-1

Compound(1762-34-1)Related Products of 1762-34-1 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 1762-34-1, is researched, SMILESS is CC1=CN=C(C=C1)C1=NC=C(C)C=C1, Molecular C12H12N2Journal, Journal of Coordination Chemistry called Five new cobalt(II) complexes based on indazole derivatives: synthesis, DNA binding and molecular docking study, Author is Long, Bing-Fan; Huang, Qin; Wang, Shu-Long; Mi, Yan; Wang, Meng-Fan; Xiong, Ting; Zhang, Shu-Cong; Yin, Xian-Hong; Hu, Fei-Long, the main research direction is preparation cobalt indazole derivative bipy phen complex; crystal structure cobalt indazole derivative bipy phen complex; DNA interaction cobalt indazole derivative bipy phen complex; thermal decomposition cobalt indazole derivative bipy phen complex.Related Products of 1762-34-1.

Five cobalt(II) complexes based on 1H-indazole-3-carboxylic acid (H2L), [Co(phen)(HL)2]·H2O (1), [Co(5,5′-dimethyl-2,2′-bipy)(HL)2] (2), [Co(2,2′-bipy)2(HL)]·5H2O (3), [Co2(2,9-dimethyl-1,10-phen)2(L)2] (4) and [Co2(6,6′-dimethyl-2,2′-bipy)2(L)2]·H2O (5) (2,2′-bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline), were synthesized and structurally characterized by elemental analyses, IR and UV-visible spectroscopies and single-crystal X-ray crystallog. 1-3 Possess mononuclear Co(II) structures, while 4 and 5 exhibit binuclear structure. 1D water tape which is linked by the multiple hydrogen bonds was embedded in the 3D motif of complex 3. Complexes 4 and 5 show two orthogonal planes of motif that was constituted by phen/2,2′-bipy and indazole acid, resp. The intermol. interactions including hydrogen bonding and π-π stacking interactions are stabilizing these complexes. The interactions of the synthesized complexes with calf-thymus DNA (CT-DNA) were studied by UV-visible absorption titration, ethidium bromide displacement assay and viscosity measurements. The complexes could interact with CT-DNA via a groove binding mode. Their behavior rationalization was further theor. studied by mol. docking.

Compound(1762-34-1)Related Products of 1762-34-1 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Brief introduction of 1799971-34-8

Compound(1799971-34-8)Safety of (S)-tert-Butyl 2-methyl-3-oxopiperazine-1-carboxylate received a lot of attention, and I have introduced some compounds in other articles, similar to this compound((S)-tert-Butyl 2-methyl-3-oxopiperazine-1-carboxylate), if you are interested, you can check out my other related articles.

Safety of (S)-tert-Butyl 2-methyl-3-oxopiperazine-1-carboxylate. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: (S)-tert-Butyl 2-methyl-3-oxopiperazine-1-carboxylate, is researched, Molecular C10H18N2O3, CAS is 1799971-34-8, about Novel methyl substituted 1-(5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanones are P2X7 antagonists. Author is Rudolph, Dale A.; Alcazar, Jesus; Ameriks, Michael K.; Anton, Ana Belen; Ao, Hong; Bonaventure, Pascal; Carruthers, Nicholas I.; Chrovian, Christa C.; De Angelis, Meri; Lord, Brian; Rech, Jason C.; Wang, Qi; Bhattacharya, Anindya; Andres, Jose Ignacio; Letavic, Michael A..

The optimization efforts that led to a novel series of Me substituted 1-(5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanones that are potent rat and human P2X7 antagonists are described. These efforts resulted in the discovery of compounds with good drug-like properties that are capable of high P2X7 receptor occupancy in rat following oral administration, including compounds I (P2X7 IC50 = 7.7 nM) and II (P2X7 IC50 = 7.7 nM). These compounds are expected to be useful tools for characterizing the effects of P2X7 antagonism in models of depression and epilepsy, and several of the compounds prepared are candidates for effective P2X7 PET tracers.

Compound(1799971-34-8)Safety of (S)-tert-Butyl 2-methyl-3-oxopiperazine-1-carboxylate received a lot of attention, and I have introduced some compounds in other articles, similar to this compound((S)-tert-Butyl 2-methyl-3-oxopiperazine-1-carboxylate), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Top Picks: new discover of 1762-34-1

Compound(1762-34-1)Related Products of 1762-34-1 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 1762-34-1, is researched, Molecular C12H12N2, about Nickel-Catalyzed Cross-Electrophile C(sp3)-Si Coupling of Unactivated Alkyl Bromides with Vinyl Chlorosilanes, the main research direction is nickel catalyst cross coupling alkyl bromide vinyl chloro silane; alkyl silane organosilane preparation.Related Products of 1762-34-1.

Cross-electrophile C-Si coupling has emerged as a promising tool for the construction of organosilanes, but the potential of this method remains largely unexplored. Herein, we report a C(sp3)-Si coupling of unactivated alkyl bromides with vinyl chlorosilanes. The reaction proceeds under mild conditions, and it offers a new approach to alkylsilanes. Functionalities such as Grignard-sensitive groups (e.g., acid, amide, alc., ketone, and ester), acid-sensitive groups (e.g., ketal and THP protection), alkyl fluoride and chloride, aryl bromide, alkyl tosylate and mesylate, silyl ether, and amine were tolerated. Incorporation of the -Si(vinyl)R2 moiety into complex mols. and the immobilization of a glass surface by formed organosilanes were demonstrated.

Compound(1762-34-1)Related Products of 1762-34-1 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Some scientific research tips on 1762-34-1

Compound(1762-34-1)Application In Synthesis of 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Application In Synthesis of 5,5′-Dimethyl-2,2′-bipyridine. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Chemical sensors based on nano-sized lanthanide-grafted periodic mesoporous organosilica hybrid materials. Author is Kaczmarek, Anna M.; Van Der Voort, Pascal.

In this work authors introduce the use of nano-sized (50-70 nm) lanthanide-grafted periodic mesoporous organosilicas for both metal ion sensing and solvent sensing. For this study a PMO constructed from the N,N-bis(trimethoxysilylpropyl)-2,6-pyridine dicarboxamide linker and tetra-Et orthosilicate (at a 5 : 95 ratio) was employed. This material was grafted with Eu3+, Tb3+ or a mixture of Eu3+-Tb3+ chloride salts to obtain strongly emitting nano-sized luminescence materials. To further enhance the luminescence properties of the materials two different co-ligands were used – 1,10-phenanthroline (phen) and 5,5′-dimethyl-2,2′-dipyridyl (bpy). The luminescence properties of the developed series of hybrid materials were studied in detail in the solid-state and after dispersing in water. The materials were investigated for their use as ion sensors, with the Eu3+ and Tb3+ phen and bpy co-grafted materials showing selective “”turn on”” fluorescence for Pb2+ and Cr3+ ions (at a 10 ppm concentration of the ions). The Eu3+-Tb3+ co-grafted materials showed solvatochromism and could be used as a solvent sensor to distinguish between protic and aprotic solvents.

Compound(1762-34-1)Application In Synthesis of 5,5′-Dimethyl-2,2′-bipyridine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Sources of common compounds: 1762-34-1

Compound(1762-34-1)Computed Properties of C12H12N2 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Zou, Guo-Dong; Gong, Liao-Kuo; Liu, Li; Zhang, Qian; Zhao, Xiang-Hua published the article 《Two low-dimensional transition metal coordination polymers constructed from thiophene-2,5-dicarboxylic acid and N/O-donor ligands: Syntheses, structures and magnetic property》. Keywords: thiophenedicarboxylic acid transition metal coordination polymer preparation structure magnetic.They researched the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1 ).Computed Properties of C12H12N2. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:1762-34-1) here.

Two low-dimensional transition metal coordination polymers (CPs), namely, Co(TDC)(Hdmea)2 (1), [Mn(TDC)(5,5′-dmbpy)(H2O)]n (2) (H2TDC = thiophene-2,5-dicarboxylic acid, Hdmea = N,N-dimethylethanolamine, 5,5′-dmbpy = 5,5′-dimethyl-2,2′-dipyridyl) have been synthesized and characterized. Compound 1 which is the first coordination compound containing the H2TDC and chelating Hdmea ligands so far features an isolated structure containing the centrosym. dinuclear [Co(TDC)(Hdmea)2]2 unit. Notably, the imidazole ligand as one of the reactants is not incorporated into the final structure of compound 1, but it is important to obtain the single crystals suitable for single-crystal X-ray diffraction anal. Compound 2 possesses a one-dimensional (1D) zigzag chain based on the [Mn(TDC)(5,5′-dmbpy)(H2O)] building unit. In addition, the magnetic property of compound 2 is investigated.

Compound(1762-34-1)Computed Properties of C12H12N2 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Introduction of a new synthetic route about 1762-34-1

Compound(1762-34-1)Category: benzodioxans received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 5,5′-Dimethyl-2,2′-bipyridine(SMILESS: CC1=CN=C(C=C1)C1=NC=C(C)C=C1,cas:1762-34-1) is researched.Formula: C7H6FNO2. The article 《Bipyridine-Directed Syntheses of Uranyl Compounds Containing Semirigid Dicarboxylate Linkers: Diversity and Consistency in Uranyl Speciation》 in relation to this compound, is published in Inorganic Chemistry. Let’s take a look at the latest research on this compound (cas:1762-34-1).

Bipyridine organic bases are beneficial to the synthesis of novel uranyl-organic hybrid materials, but the relationship between their mol. structures and specific roles as structure-directing agents, especially for the semirigid dicarboxylate systems, is still unclear. Here we demonstrate how the bipyridine ligands direct the coordination assembly of uranyl-organic compounds with a semirigid dicarboxylate linker, 4,4′-dicarboxybiphenyl sulfone (H2dbsf), by utilizing a series of bipyridine ligands, 1,10-phenanthroline (phen), 2,2′-bipyridine (2,2′-bpy), 5,5′-dimethylbipyridine (5,5′-dmbpy), 4,4′-bipyridine (4,4′-bpy), or 1,3-di(4-pyridyl)propane (bpp). Under hydrothermal conditions, eight uranyl-organic coordination polymers (UCPs), four of which [[UO2(dbsf)(phen)] (1), [UO2(dbsf)(phen)]·H2O (1′), [U4O10(dbsf)3]2[H2bpp]2 (6), and [U4O10(dbsf)3]2[H2bpp] (6′)] were reported previously, were synthesized and divided into two types based on the chelate or template effect of these bipyridine ligands. 1, 1′, [UO2(dbsf)(2,2′-bpy)] (2), and [(UO2)2(dbsf)2(5,5′-dmbpy)2] (3) are springlike triple helixes with bipyridine ligands (phen, 2,2′-bpy, or 5,5′-dmbpy) as chelate ligands, while [U4O10(dbsf)3][H2(4,4′-bpy)] (4), [U4O10(dbsf)3]2[H(4,4′-bpy)]2[Ni(H2O)6] (5), 6, and 6′ are tetranuclear uranyl-mediated 2-fold-interpenetrating networks with 4,4′-bpy or bpp as template ligands and charge-balancing agents. The participation or not in uranyl coordination of different bipyridine ligands promotes not only diversity in uranyl speciation and final topol. structures among different classes of organic bases but also consistency for the same types of bipyridine ligands, which thus endows the possibility of the rational design of UCPs based on semirigid dicarboxylate ligands with the aid of cautiously selected bipyridine ligands.

Compound(1762-34-1)Category: benzodioxans received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5,5′-Dimethyl-2,2′-bipyridine), if you are interested, you can check out my other related articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem