Our Top Choice Compound: 1762-34-1

After consulting a lot of data, we found that this compound(1762-34-1)Name: 5,5′-Dimethyl-2,2′-bipyridine can be used in many types of reactions. And in most cases, this compound has more advantages.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Syntheses, molecular structures, and spectroscopic properties of manganese(II)/(III) complexes with tetraphenylimidodiphosphinato and bi-pyridine or salicylaldehyde ligands》. Authors are Qian, Zhe; Zhang, Ying; Jia, Ai-Quan; Shi, Hua-Tian; Zhang, Qian-Feng.The article about the compound:5,5′-Dimethyl-2,2′-bipyridinecas:1762-34-1,SMILESS:CC1=CN=C(C=C1)C1=NC=C(C)C=C1).Name: 5,5′-Dimethyl-2,2′-bipyridine. Through the article, more information about this compound (cas:1762-34-1) is conveyed.

Treatment of [Mn(CH3COO)2·4H2O] with two equivalent of K[N(Ph2PO)2] in the presence of one equivalent of 2,2′-bipyridine (bpy) or 5,5′-dimethyl-2,2′-bipyridine(dmbpy) in ethanol gave the mono-nuclear manganese(II) complexes [Mn{η1-O-N(Ph2PO)2}{N(Ph2PO)2}(EtOH)(bpy)] (1) and [Mn{N(Ph2PO)2}2(dmbpy)] (2), resp. Interaction of [Mn(CH3COO)2·4H2O], K[N(Ph2PO)2] and salicylaldehyde or 5-chlorosalicylaldehyde or 3,5-dibromosalicylaldehyde in the presence of triethylamine in methanol gave the bi-nuclear manganese(II) complexes [Mn2{N(Ph2PO)2}2(μ,η2-O,O’-Sal)2(MeOH)2] (3) and [Mn2{N(Ph2PO)2}2(μ,η2-O,O’-5-Cl-Sal)2(MeOH)2] (4), and a tetra-nuclear manganese(II)/(III) complex [Mn4{N(Ph2PO)2}2(μ,η2-O,O’-3,5-Br2-Sal’)2(MeOH)4(μ-OMe)2(μ3-OMe)2] (5), resp. All complexes were characterized by IR and UV spectroscopy, their mol. structures were unambiguously established by single crystal x-ray diffraction. The electrochem. properties of complexes 1-5 were also studied.

After consulting a lot of data, we found that this compound(1762-34-1)Name: 5,5′-Dimethyl-2,2′-bipyridine can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

A small discovery about 1762-34-1

Although many compounds look similar to this compound(1762-34-1)Related Products of 1762-34-1, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 1762-34-1, is researched, SMILESS is CC1=CN=C(C=C1)C1=NC=C(C)C=C1, Molecular C12H12N2Journal, Journal of the Iranian Chemical Society called Catalytic hydrogenation of aldehydes and ketones using cinchona-bipyridyl-based palladium catalyst, Author is Chidambaram, Ramasamy R.; Sadhasivam, Velu; Mariyappan, Mathappan; Siva, Ayyanar, the main research direction is cinchona bipyridyl palladium catalyst preparation surface structure; aldehyde cinchona bipyridyl palladium catalyst hydrogenation; ketone cinchona bipyridyl palladium catalyst hydrogenation; alc preparation.Related Products of 1762-34-1.

Understanding the need for simple, robust and low effluents, in chem. processes, an elegant protocol was developed for the catalytic reduction of aldehydes and ketones to corresponding alcs. which were used in synthetic fragrance applications using cinchona alkaloid-derived palladium catalyst. This system holds good for very low catalyst loading surfaces with the formation of fewer impurities and negligible decomposition under moderate pressure. The conversions and yields ranges from moderate to good (60-80%).

Although many compounds look similar to this compound(1762-34-1)Related Products of 1762-34-1, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Chemical Research in 1762-34-1

Although many compounds look similar to this compound(1762-34-1)Related Products of 1762-34-1, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Related Products of 1762-34-1. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Catalytic hydrogenation of aldehydes and ketones using cinchona-bipyridyl-based palladium catalyst. Author is Chidambaram, Ramasamy R.; Sadhasivam, Velu; Mariyappan, Mathappan; Siva, Ayyanar.

Understanding the need for simple, robust and low effluents, in chem. processes, an elegant protocol was developed for the catalytic reduction of aldehydes and ketones to corresponding alcs. which were used in synthetic fragrance applications using cinchona alkaloid-derived palladium catalyst. This system holds good for very low catalyst loading surfaces with the formation of fewer impurities and negligible decomposition under moderate pressure. The conversions and yields ranges from moderate to good (60-80%).

Although many compounds look similar to this compound(1762-34-1)Related Products of 1762-34-1, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Little discovery in the laboratory: a new route for 1762-34-1

Although many compounds look similar to this compound(1762-34-1)Reference of 5,5′-Dimethyl-2,2′-bipyridine, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Jacob, Jinsa Mary; Kurup, M. R. Prathapachandra; Nisha, K.; Serdaroglu, Goncagul; Kaya, Savas published an article about the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1,SMILESS:CC1=CN=C(C=C1)C1=NC=C(C)C=C1 ).Reference of 5,5′-Dimethyl-2,2′-bipyridine. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1762-34-1) through the article.

Five new copper(II) chelates [(Cu(bmct))2] (1), [Cu(bmct)(phen)] (2), [Cu(bmct)(bipy)] (3), [Cu(bmct)(4,4′-dmbipy)] (4) and [Cu(bmct)(5,5′-dmbipy)] (5) with 5-bromo-3-methoxysalicylaldehyde-N(4)-cyclohexylthiosemicarbazone (H2bmct) as the chelating ligand and 1,10-phenanthroline, 2,2′-bipyridine, 4,4′-dimethylbipyridine, 5,5′-dimethylbipyridine as coligands were synthesized and characterized by different physicochem. techniques like CHNS anal., molar conductivity and magnetic studies, IR, UV/Vis and EPR spectral studies. In all the complexes, the thiosemicarbazone exists in thioiminolate form and coordinates to the metal through azomethine nitrogen, thioiminolate sulfur, and phenolate oxygen. EPR spectra in polycrystalline state at 298 K showed that compounds 1, 4, and 5 are isotropic, 2 is axial and 3 is rhombic in nature. In DMF at 77 K, compound 1 showed hyperfine lines in the parallel and perpendicular regions as well as superhyperfine lines due to the interaction of copper center with azomethine nitrogen of the ligand. Complex 2, in which g-II > g ⊥> 2.0023 suggests a distorted square pyramidal structure. To analyze the stability of the complexes, quantum chem. parameters like hardness, softness, polarizability, electrophilicity, electronegativity, and dipole moment were calculated and discussed within the framework of electronic structure principles known as Maximum Hardness, Min. Polarizability and Min. Electrophilicity Principles. Besides, the intramol. donor-acceptor interactions for all complexes were evaluated by using NBO anal. All calculations proved that compound 3 is the most stable chelate among them.

Although many compounds look similar to this compound(1762-34-1)Reference of 5,5′-Dimethyl-2,2′-bipyridine, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Final Thoughts on Chemistry for 1762-34-1

Although many compounds look similar to this compound(1762-34-1)Product Details of 1762-34-1, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Product Details of 1762-34-1. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Syntheses, structures and photocatalytic properties of ruthenium(II) complexes supported by a tetradentate cyclen ligand (cyclen = 1,4,7,10-tetraazacyclododecane). Author is Qian, Bing-Feng; Gao, Yang; Liu, Xiao-Li; Wang, Jun-Ling; Jia, Ai-Quan; Zhang, Qian-Feng.

Treatment of [(cyclen)RuCl(dmso)]Cl (cyclen = 1,4,7,10-tetraazacyclododecane, dmso = dimethylsulfoxide, 1) with zinc powder in the presence of potassium hexafluorophosphate or sodium perchlorate in acetonitrile afforded the cationic complexes [(cyclen)Ru(dmso)(MeCN)]Q2 (Q = PF6 (2), ClO4 (3)). Interaction of 1, zinc powder and 4-tert-butylpyridine or pyridine in the presence of triethylamine and sodium perchlorate gave pyridine-ruthenium(II) complexes Na[(cyclen)Ru(dmso)(4-tBupy)](ClO4)3 (4) and [(cyclen)Ru(py)2](ClO4)2 (5), resp. While reactions of 1, zinc powder and 1,10-phenanthroline (phen) or 5,5′-dimethyl-2,2′-bipyridine (5,5′-Me2bpy) in the presence of triethylamine and potassium hexafluorophosphate gave bipyridine-ruthenium(II) complexes [(cyclen)Ru(phen)](PF6)2 (6) and [(cyclen)Ru(5,5′-Me2bpy)](PF6)2 (7), resp. Complexes 1-7 are characterized by IR, UV/Vis, NMR spectroscopies along with their electrochem. properties. The mol. structures of complexes 1-7 have been established by single-crystal x-ray diffraction. The photocatalytic properties of complexes 6 and 7 with a large π-electron delocalized system for the H2 evolution by water reduction were also investigated in the paper.

Although many compounds look similar to this compound(1762-34-1)Product Details of 1762-34-1, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Archives for Chemistry Experiments of 1762-34-1

Although many compounds look similar to this compound(1762-34-1)Quality Control of 5,5′-Dimethyl-2,2′-bipyridine, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Stereoselective self-assembly of DNA binding helicates directed by the viral β-annulus trimeric peptide motif.Quality Control of 5,5′-Dimethyl-2,2′-bipyridine.

Combining coordination chem. and peptide engineering offers extraordinary opportunities for developing novel mol. (supra)structures. Here, we demonstrate that the β-annulus motif is capable of directing the stereoselective assembly of designed peptides containing 2,2′-bipyridine ligands into parallel three-stranded chiral peptide helicates, and that these helicates selectively bind with high affinity to three-way DNA junctions.

Although many compounds look similar to this compound(1762-34-1)Quality Control of 5,5′-Dimethyl-2,2′-bipyridine, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Sources of common compounds: 1762-34-1

Although many compounds look similar to this compound(1762-34-1)Recommanded Product: 1762-34-1, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Recommanded Product: 1762-34-1. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Ru(II)/N-N/PPh3 complexes as potential anticancer agents against MDA-MB-231 cancer cells (N-N = diimine or diamine). Author is Ribeiro, Gabriel H.; Colina-Vegas, Legna; Clavijo, Juan C. T.; Ellena, Javier; Cominetti, Marcia R.; Batista, Alzir A..

The rational design of anticancer agents that acts in specific biol. targets is one of the most effective strategies for developing chemotherapeutic agents. Aiming at obtaining new ruthenium(II) compounds with good cytotoxicity against tumor cells, a series of new complexes of general formula [RuCl(PPh3)(Hdpa)(N-N)]Cl [PPh3 = triphenylphosphine, N-N = 2,2′-dipyridylamine (Hdpa) (1), 1,2-diaminoethane (en) (2), 2,2′-bipyridine (bipy) (3), 5,5′-dimethyl-2,2′-bipyridine (dmbipy) (4), 1,10-phenanthroline (phen) (5) and 4,7-diphenyl-1,10-phenanthroline (dphphen) (6)] were synthesized. The complexes were characterized by elemental anal. and spectroscopic techniques (IR, UV/Visible, and 1D and 2D NMR) and three of their x-ray structures were determined: [RuCl(PPh3)(Hdpa)2]Cl, [RuCl(PPh3)(Hdpa)(en)]Cl and [RuCl(PPh3)(Hdpa)(dmbipy)]Cl. All the complexes are more cytotoxic against the cancer cell line than against the non-tumor cell line, highlighting complexes 1 and 5, which have an index selectivity of 18 and 15, resp. The binding constants of compounds 1-6 with human serum albumin (HSA) were determined by tryptophan fluorescence quenching, indicating moderate to strong interactions. The binding mode of the complexes to calf thymus (CT) DNA was explored by several techniques, which reveal that only the dphphen compound 6 causes distortions in the secondary and tertiary structures of DNA. The nature of the N-N co-ligand and the presence of the PPh3 and Hdpa ligands are features that can influence the binding affinity of the complexes by the biomols. and in the cytotoxic activity of the complexes. Overall, the complexes with diimine co-ligand are much more cytotoxic than compound 2 with the aliphatic diamine.

Although many compounds look similar to this compound(1762-34-1)Recommanded Product: 1762-34-1, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Discovery of 1762-34-1

Although many compounds look similar to this compound(1762-34-1)COA of Formula: C12H12N2, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

COA of Formula: C12H12N2. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Copper-functionalized nanostructured silica-based systems: Study of the antimicrobial applications and ROS generation against gram positive and gram negative bacteria. Author is Diaz-Garcia, Diana; Ardiles, Perla R.; Diaz-Sanchez, Miguel; Mena-Palomo, Irene; del Hierro, Isabel; Prashar, Sanjiv; Rodriguez-Dieguez, Antonio; Paez, Paulina L.; Gomez-Ruiz, Santiago.

A series of copper-functionalized SBA-15 (Santa Barbara Amorphous) materials containing the ligands triethoxysilylpropylmaleamic acid (maleamic) or triethoxy-3-(2-imidazolin-1-yl)propylsilane (imidazoline) have been prepared The nanostructured silica-based systems SBA-maleamic, SBA-imidazoline, SBA-maleamic-Cu and SBA-imidazoline-Cu were characterized by several methods observing that the functionalization took place mainly inside the pores of the mesoporous system. The antimicrobial behavior of the synthesized materials against Staphylococcus aureus and Escherichia coli was tested observing a very potent activity of the copper-functionalized systems (min. inhibitory concentration (MIC) and min. bactericidal concentration (MBC) values for SBA-maleamic-Cu of ca. 31.25 μg/mL, which correspond with ca. 1.13 μg/mL of Cu). A study of the oxidative stress promoted by the synthesized materials showed that the SBA-maleamic-Cu and the SBA-imidazoline-Cu were able to increase the reactive oxygen species (ROS) production in S. aureus by 427% and 373%, resp., while this increase was slightly lower in E. coli (387 and 324%, resp.). Furthermore, an electrochem. study was carried out in order to determine if these materials interact with lysine or alanine to validate a potential antimicrobial mechanism based on the inhibition of the synthesis of the peptidoglycan of the bacterial wall. Finally, these studies were also performed to determine the potential interaction of the copper-containing materials with glutathione in order to assess if they are able to perturb the metabolism of this tripeptide.

Although many compounds look similar to this compound(1762-34-1)COA of Formula: C12H12N2, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

New explortion of 1762-34-1

Although many compounds look similar to this compound(1762-34-1)Application In Synthesis of 5,5′-Dimethyl-2,2′-bipyridine, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Structure analysis and biological functionalities of a nickel(II) complex and its sonochemically synthesized nano form: in vitro anti-proliferation, DNA binding, antibacterial and molecular docking study, published in 2021-05-05, which mentions a compound: 1762-34-1, Name is 5,5′-Dimethyl-2,2′-bipyridine, Molecular C12H12N2, Application In Synthesis of 5,5′-Dimethyl-2,2′-bipyridine.

A compound of {[Ni(5,5′-Dimethyl-2,2′-bipyridine)3](SCN)2}2(a) was synthesized and characterized by FTIR, UV-visible spectroscopy, elemental anal., luminescence and x-ray crystallog. The single crystals were obtained by slow crystallization from a methanol solution The complex is composed of nickel cation chelated by three neutral bipyridine ligands and two (SCN-) ions outside the coordination sphere. The nano form of the synthesized complex (b) was prepared by a sonochem. process and confirmed with XRD, SEM and FTIR. The average size of the particles was 37 nm from SEM. Thermodn. parameters (ΔH°, ΔS° and ΔG°) calculated from FS-DNA interaction of complexes showed that hydrogen bonding and van der Waals interactions have an essential function in the interaction of DNA-Ni(II) complex, and the interaction mode is groove binding. Viscosity measurement illustrated that relative viscosity of DNA remained unchanged with the adding concentrations of complexes. CD spectra showed that the structure of DNA was changed. The antibacterial properties were investigated in vitro against standard Gram-pos. and Gram-neg. bacterial strains. The results of antibacterial tests showed that (a) was a stronger antibacterial agent than the free ligand, and that the antibacterial effect of (b) was stronger than the one of (a). The cytotoxicity activity experiments against MCF-7, KB and A549 cells revealed low to moderate antiproliferative activity of the complex (b) against cancer cells. The mol. docking results exhibited groove mode of binding, confirming previously obtained data from spectroscopy, viscometry and CD.

Although many compounds look similar to this compound(1762-34-1)Application In Synthesis of 5,5′-Dimethyl-2,2′-bipyridine, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Something interesting about 1762-34-1

Although many compounds look similar to this compound(1762-34-1)Application In Synthesis of 5,5′-Dimethyl-2,2′-bipyridine, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Application In Synthesis of 5,5′-Dimethyl-2,2′-bipyridine. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about An aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst. Author is Cheedarala, Ravi Kumar; Chidambaram, Ramasamy R.; Siva, Ayyanar; Song, Jung Il.

An aerobic oxidation of primary and secondary alcs. RCH2OH (R = 2-methylphenyl, cyclohexyl, naphthalen-1-yl, pyridin-4-yl, etc.) to resp. aldehydes RCHO and ketones RCO using a bipyridyl-cinchona alkaloid based palladium catalytic system (PdAc-5) I·2Br using oxygen at moderate pressure was reported. The PdAc-5 catalyst was analyzed using SEM, EDAX, and XPS anal. The above catalytic system is used in experiments for different oxidation systems which include different solvents, additives, and bases which are cheap, robust, non-toxic, and com. available on the industrial bench. The obtained products are quite appreciable in both yield and selectivity (70-85%). In addition, numerous important studies, such as comparisons with various com. catalysts, solvent systems, mixture of solvents, and catalyst mole%, were conducted using PdAc-5. The synthetic strategy of oxidation of alc. into carbonyl compounds was well established and all the products were analyzed.

Although many compounds look similar to this compound(1762-34-1)Application In Synthesis of 5,5′-Dimethyl-2,2′-bipyridine, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem