Archives for Chemistry Experiments of 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)COA of Formula: C12H12N2, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

COA of Formula: C12H12N2. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Construction of lanthanide complexes based on 3,4-dichlorobenzoic acid and 5,5′-dimethyl-2,2′-bipyridine: Supramolecular structures, thermodynamic properties and luminescent behaviors. Author is Zhou, Meng-Xue; Ning, Ren; Hu, Jin-Yong; Zhang, Jian-Jun; Wang, Da-Qi.

Two novel lanthanide complexes, [Ln2(3,4-DClBA)6(5,5′-DM-2,2′-bipy)2(C2H5OH)(H2O)] (Ln = Gd (1), Tb (2)); 3,4-DClBA: 3,4-dichlorobenzoate; 5,5′-DM-2,2′-bipy: 5,5′-dimethyl-2,2′-bipyridine have been hydrothermally synthesized and structurally characterized by elemental anal., IR spectrum, thermal anal. and single x-ray diffraction techniques. The binuclear complexes 1-2 are isomorphous and crystallize in the triclinic crystal system and P1̅ space group, and each metal center is eight-coordinated with distorted square antiprismatic mol. geometry. The structure of this type of complex is unique in that the solvent ethanol mol. participates in the coordination. Complexes 1-2 are stitched together via π-π stacking interactions and hydrogen bonding interactions to form the 1D, 2D supramol. structures. The thermal decomposition mechanisms of two complexes were obtained by TG-DSC/FTIR techniques. The molar heat capacities of the complexes 1 and 2 are measured by a DSC instrument over the temperature range from 255.15 to 323.15 K and thermodn. functions were calculated by fitted polynomial and thermodn. equations. The luminescence studies demonstrate that complex 2 exhibits the characteristic emission of Tb3+ ion (5D4 → 7F6-3).

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)COA of Formula: C12H12N2, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Brief introduction of 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Safety of 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Safety of 5,5′-Dimethyl-2,2′-bipyridine. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Ru(II)/N-N/PPh3 complexes as potential anticancer agents against MDA-MB-231 cancer cells (N-N = diimine or diamine). Author is Ribeiro, Gabriel H.; Colina-Vegas, Legna; Clavijo, Juan C. T.; Ellena, Javier; Cominetti, Marcia R.; Batista, Alzir A..

The rational design of anticancer agents that acts in specific biol. targets is one of the most effective strategies for developing chemotherapeutic agents. Aiming at obtaining new ruthenium(II) compounds with good cytotoxicity against tumor cells, a series of new complexes of general formula [RuCl(PPh3)(Hdpa)(N-N)]Cl [PPh3 = triphenylphosphine, N-N = 2,2′-dipyridylamine (Hdpa) (1), 1,2-diaminoethane (en) (2), 2,2′-bipyridine (bipy) (3), 5,5′-dimethyl-2,2′-bipyridine (dmbipy) (4), 1,10-phenanthroline (phen) (5) and 4,7-diphenyl-1,10-phenanthroline (dphphen) (6)] were synthesized. The complexes were characterized by elemental anal. and spectroscopic techniques (IR, UV/Visible, and 1D and 2D NMR) and three of their x-ray structures were determined: [RuCl(PPh3)(Hdpa)2]Cl, [RuCl(PPh3)(Hdpa)(en)]Cl and [RuCl(PPh3)(Hdpa)(dmbipy)]Cl. All the complexes are more cytotoxic against the cancer cell line than against the non-tumor cell line, highlighting complexes 1 and 5, which have an index selectivity of 18 and 15, resp. The binding constants of compounds 1-6 with human serum albumin (HSA) were determined by tryptophan fluorescence quenching, indicating moderate to strong interactions. The binding mode of the complexes to calf thymus (CT) DNA was explored by several techniques, which reveal that only the dphphen compound 6 causes distortions in the secondary and tertiary structures of DNA. The nature of the N-N co-ligand and the presence of the PPh3 and Hdpa ligands are features that can influence the binding affinity of the complexes by the biomols. and in the cytotoxic activity of the complexes. Overall, the complexes with diimine co-ligand are much more cytotoxic than compound 2 with the aliphatic diamine.

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Safety of 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Derivation of elementary reaction about 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Quality Control of 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 1762-34-1, is researched, Molecular C12H12N2, about An aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst, the main research direction is aldehyde preparation green chem; ketone preparation green chem; alc aerobic oxidation bipyridyl cinchona palladium catalyst.Quality Control of 5,5′-Dimethyl-2,2′-bipyridine.

An aerobic oxidation of primary and secondary alcs. RCH2OH (R = 2-methylphenyl, cyclohexyl, naphthalen-1-yl, pyridin-4-yl, etc.) to resp. aldehydes RCHO and ketones RCO using a bipyridyl-cinchona alkaloid based palladium catalytic system (PdAc-5) I·2Br using oxygen at moderate pressure was reported. The PdAc-5 catalyst was analyzed using SEM, EDAX, and XPS anal. The above catalytic system is used in experiments for different oxidation systems which include different solvents, additives, and bases which are cheap, robust, non-toxic, and com. available on the industrial bench. The obtained products are quite appreciable in both yield and selectivity (70-85%). In addition, numerous important studies, such as comparisons with various com. catalysts, solvent systems, mixture of solvents, and catalyst mole%, were conducted using PdAc-5. The synthetic strategy of oxidation of alc. into carbonyl compounds was well established and all the products were analyzed.

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Quality Control of 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

New learning discoveries about 1762-34-1

If you want to learn more about this compound(5,5′-Dimethyl-2,2′-bipyridine)Synthetic Route of C12H12N2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1762-34-1).

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 1762-34-1, is researched, Molecular C12H12N2, about A binuclear iron(III) complex of 5,5′-dimethyl-2,2′-bipyridine as cytotoxic agent, the main research direction is binuclear iron complex dimethyl bipyridine cytotoxic agent; 5,5′-dimethyl-2,2′-bipyridine; Binuclear iron(III) complex; Cytotoxicity; Fish salmon DNA.Synthetic Route of C12H12N2.

The binuclear iron(III) complex (1), namely, {[Fe(5,5′-dmbpy)2(OH2)]2(O)}(NO3)4 with a distorted octahedral coordination, formed by four nitrogen and two oxygen atoms, was previously reported by our team. In this study the DNA-binding and cytotoxicity evaluation for target complex were studied. The results indicated strong cytotoxicity activity against A549 cells comparable to cisplatin values. The binding interaction between complex 1 and FS-DNA was investigated by UV-Vis, fluorescence spectroscopy, and gel electrophoresis at physiol. pH (7.2). The DNA binding investigation has shown groove binding interactions with complex 1, therefore the hydrogen binding plays an important role in the interaction of DNA with complex 1. The calculated thermodn. parameters (ΔH°, ΔS° and ΔG°) show that hydrogen bonding and Vander-Waals forces have an important function in Fe(III) complex-DNA interaction. Moreover, DNA cleavage was studied using agarose gel electrophoresis. Viscosity measurements illustrated that relative viscosity of DNA was unchanged with the adding concentrations of Fe(III) complex. Mol. docking simulation results confirmed the spectroscopic and viscosity titration outcomes.

If you want to learn more about this compound(5,5′-Dimethyl-2,2′-bipyridine)Synthetic Route of C12H12N2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

New learning discoveries about 1762-34-1

If you want to learn more about this compound(5,5′-Dimethyl-2,2′-bipyridine)Related Products of 1762-34-1, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1762-34-1).

Related Products of 1762-34-1. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Stereoselective self-assembly of DNA binding helicates directed by the viral β-annulus trimeric peptide motif. Author is Gomez-Gonzalez, Jacobo; Bouzada, David; Perez-Marquez, Lidia A.; Sciortino, Giuseppe; Marechal, Jean-Didier; Vazquez Lopez, Miguel; Vazquez, M. Eugenio.

Combining coordination chem. and peptide engineering offers extraordinary opportunities for developing novel mol. (supra)structures. Here, we demonstrate that the β-annulus motif is capable of directing the stereoselective assembly of designed peptides containing 2,2′-bipyridine ligands into parallel three-stranded chiral peptide helicates, and that these helicates selectively bind with high affinity to three-way DNA junctions.

If you want to learn more about this compound(5,5′-Dimethyl-2,2′-bipyridine)Related Products of 1762-34-1, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Discovery of 1762-34-1

If you want to learn more about this compound(5,5′-Dimethyl-2,2′-bipyridine)Formula: C12H12N2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1762-34-1).

Formula: C12H12N2. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Copper-functionalized nanostructured silica-based systems: Study of the antimicrobial applications and ROS generation against gram positive and gram negative bacteria. Author is Diaz-Garcia, Diana; Ardiles, Perla R.; Diaz-Sanchez, Miguel; Mena-Palomo, Irene; del Hierro, Isabel; Prashar, Sanjiv; Rodriguez-Dieguez, Antonio; Paez, Paulina L.; Gomez-Ruiz, Santiago.

A series of copper-functionalized SBA-15 (Santa Barbara Amorphous) materials containing the ligands triethoxysilylpropylmaleamic acid (maleamic) or triethoxy-3-(2-imidazolin-1-yl)propylsilane (imidazoline) have been prepared The nanostructured silica-based systems SBA-maleamic, SBA-imidazoline, SBA-maleamic-Cu and SBA-imidazoline-Cu were characterized by several methods observing that the functionalization took place mainly inside the pores of the mesoporous system. The antimicrobial behavior of the synthesized materials against Staphylococcus aureus and Escherichia coli was tested observing a very potent activity of the copper-functionalized systems (min. inhibitory concentration (MIC) and min. bactericidal concentration (MBC) values for SBA-maleamic-Cu of ca. 31.25 μg/mL, which correspond with ca. 1.13 μg/mL of Cu). A study of the oxidative stress promoted by the synthesized materials showed that the SBA-maleamic-Cu and the SBA-imidazoline-Cu were able to increase the reactive oxygen species (ROS) production in S. aureus by 427% and 373%, resp., while this increase was slightly lower in E. coli (387 and 324%, resp.). Furthermore, an electrochem. study was carried out in order to determine if these materials interact with lysine or alanine to validate a potential antimicrobial mechanism based on the inhibition of the synthesis of the peptidoglycan of the bacterial wall. Finally, these studies were also performed to determine the potential interaction of the copper-containing materials with glutathione in order to assess if they are able to perturb the metabolism of this tripeptide.

If you want to learn more about this compound(5,5′-Dimethyl-2,2′-bipyridine)Formula: C12H12N2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Brief introduction of 1762-34-1

If you want to learn more about this compound(5,5′-Dimethyl-2,2′-bipyridine)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1762-34-1).

Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Dehydrogenative Synthesis of 2,2′-Bipyridyls through Regioselective Pyridine Dimerization.

2,2′-Bipyridyls have been utilized as indispensable ligands in metal-catalyzed reactions. The most streamlined approach for the synthesis of 2,2′-bipyridyls is the dehydrogenative dimerization of unfunctionalized pyridine. Herein, we report on the palladium-catalyzed dehydrogenative synthesis of 2,2′-bipyridyl derivatives The Pd catalysis effectively works with an AgI salt as the oxidant in the presence of pivalic acid. A variety of pyridines regioselectively react at the C2-positions. This dimerization method is applicable for challenging substrates such as sterically hindered 3-substituted pyridines, where the pyridines regioselectively react at the C2-position. This reaction enables the concise synthesis of twisted 3,3′-disubstituted-2,2′-bipyridyls as an underdeveloped class of ligands.

If you want to learn more about this compound(5,5′-Dimethyl-2,2′-bipyridine)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

More research is needed about 1762-34-1

If you want to learn more about this compound(5,5′-Dimethyl-2,2′-bipyridine)Name: 5,5′-Dimethyl-2,2′-bipyridine, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1762-34-1).

Name: 5,5′-Dimethyl-2,2′-bipyridine. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about High sensitivity and selectivity of aminoantipyrine schiff base for recognition of Fe2+. Author is Chen, Sheng-tian; Zhang, Yu; Zhao, Jian-ying; Ma, Kui-rong; Li, Rong-qing; Tang, Guo-dong.

An aminoantipyrine based chemosensor, (E)-1,5-dimethyl-4-((2-(4-methylpyridin-2-yl)pyridin-4-yl)methyleneamino)-2-phenyl-1,2-dihydropyrazol-3-one(L), derived from 4-aminoantipyrine and 2-(4-methylpyridin-2-yl) isonicotinaldehyde, was synthesized and the optical and metal sensing properties were investigated. The chemosensor L showed a selective colorimetric sensing ability for Fe2+ by changing colors from pale yellow to deep red in water-ethanol (9:1, V/V) medium, which facilitates the ‘naked-eye’ recognition of Fe2+ from other examined metal ions. The complex stoichiometry of Fe2+ to L(1:3,[FeL3]2+) was obtained by Job’s method. The association constant was determined to be 3.70×1021 L3·mol-3. The present results indicate that the chemosensor L could be used as a selective, sensitive colorimetric sensor for Fe2+.

If you want to learn more about this compound(5,5′-Dimethyl-2,2′-bipyridine)Name: 5,5′-Dimethyl-2,2′-bipyridine, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

New learning discoveries about 1762-34-1

If you want to learn more about this compound(5,5′-Dimethyl-2,2′-bipyridine)Product Details of 1762-34-1, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1762-34-1).

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Spectroscopic, structural and DFT studies of luminescent Pt(II) and Ag(I) complexes with an asymmetric 2,2′-bipyridine chelating ligand.Product Details of 1762-34-1.

A new unsym. substituted 2,2′-bipyridine ligand, 5-methyl-5′-carbomethoxy-2,2′-bipyridine (L) was isolated from the dry distillation of the copper(II) complex, mono-aqua-bis(trans-5-methyl-pyridine-2-carboxylato-N,O)copper(II). The ligand was fully characterized. The spectroscopic and single-crystal x-ray diffraction (SCXRD) studies of the coordination compounds of the ligand with platinum(II) and silver(I); cis-Pt(L)Cl2 (1) and [Ag(L)2]PF6 (2), resp. are reported. In 1, the Pt center coordinates to tertiary N atoms of the ligand and two chloride ions to form a neutral square-planar coordination sphere, while in 2, the Ag(I) center is coordinated by two ligands through N atoms to generate a cationic flattened tetrahedron geometry in which two mean planes intersect each other at 50.93°. The pyridine rings are nearly coplanar as revealed by the torsion angle of N2-C7-C6-N1 1.32(5)°. In both complexes, L acts as a chelating ligand through pyridyl N atoms. In 1, the mol. units are stacked in a head-to-tail fashion with a Pt···Pt separation of 3.5 Å. Supramol. self-assembly of the mol. units by extensive intermol. contacts through C-H···Cl and C-H···O between the adjacent units results in an infinite two-dimensional flattened-out herringbone structure in the crystalline state. In 2, the mol. units are interconnected with each other by C-H···O contacts between the adjacent units running parallel to each other. Both complexes are fluorescent in solution and have emission maxima in the UV-Vis regions, which is a very important property for optoelectronic applications. DFT (d. functional theory) and TD-DFT (time-dependent-DFT) calculations were performed at B3LYP/6-311+G(d,p)/LANL2DZ level to explore structural, electronic, and spectroscopic properties to compare with the exptl. results. The MOs were carried out with DFT at the same level.

If you want to learn more about this compound(5,5′-Dimethyl-2,2′-bipyridine)Product Details of 1762-34-1, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Some scientific research about 1762-34-1

If you want to learn more about this compound(5,5′-Dimethyl-2,2′-bipyridine)Application of 1762-34-1, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1762-34-1).

Almenara, Naroa; Barquin, Montserrat; Huertos, Miguel A.; Garralda, Maria A. published an article about the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1,SMILESS:CC1=CN=C(C=C1)C1=NC=C(C)C=C1 ).Application of 1762-34-1. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1762-34-1) through the article.

The reaction of [Rh(μ-Cl)(cod)]2 with diimines, differing in their steric and electronic properties, and with diphenylphosphine oxide leads to the oxidative addition products, hydrido-phosphinito-Rh(III) complexes {Rh(PPh2OH)(PPh2O)(NN)(H)Cl} (1), stabilized by the formation of a hydrogen bonded phosphinous acid-phosphinito quasi-chelate [(PO···HOP)-κ2P]. Exchange of hydride by chloride to afford {Rh(PPh2OH)(PPh2O)(NN)Cl2} (2) occurs in hydrido complexes containing low steric hindrance diimines and is inhibited for complexes containing encumbered diimines. Complexes 1 react with BF3·OEt2 with exchange of the acidic proton by BF2, and transformation of the quasi-chelating PO···HOP into a chelating PO-BF2-OP ligand in {Rh{(PPh2O)2BF2}(NN)(H)Cl} (3). The reaction of [Rh(μ-Cl)(nbd)]2 or [Rh(acac)(nbd)] with diphenylphosphine oxide leads to coordinatively unsaturated nortricyclyl-phosphinito-Rh(III) complexes, {Rh(PPh2OH)(PPh2O)(ntyl)(μ-Cl)}2 (4) or {Rh(PPh2OH)(PPh2O)(ntyl)(acac)} (6), resp. Their reaction with BF3·OEt2 results in the corresponding {Rh{(PPh2O)2BF2}(ntyl)(μ-Cl)}2 (5) or {Rh{(PPh2O)2BF2}(ntyl)(acac)} (7). Some of these new complexes have shown catalytic activity in hydrophosphinylation of alkynes, with {Rh(PPh2OH)(PPh2O)(NN)(H)Cl} containing encumbered NN being efficient and regioselective catalysts in the hydrophosphinylation of phenylacetylene with diphenylphosphine oxide to produce (E)-diphenyl(styryl)phosphine oxide.

If you want to learn more about this compound(5,5′-Dimethyl-2,2′-bipyridine)Application of 1762-34-1, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem