A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 2879-20-1
Application of 2879-20-1, The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.2879-20-1, Name is 1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)ethanone, molecular formula is C10H10O3. In a Article£¬once mentioned of 2879-20-1
Scope and Mechanistic Analysis for Chemoselective Hydrogenolysis of Carbonyl Compounds Catalyzed by a Cationic Ruthenium Hydride Complex with a Tunable Phenol Ligand
A cationic ruthenium hydride complex, [(C6H6)(PCy3)(CO)RuH]+BF4- (1), with a phenol ligand was found to exhibit high catalytic activity for the hydrogenolysis of carbonyl compounds to yield the corresponding aliphatic products. The catalytic method showed exceptionally high chemoselectivity toward the carbonyl reduction over alkene hydrogenation. Kinetic and spectroscopic studies revealed a strong electronic influence of the phenol ligand on the catalyst activity. The Hammett plot of the hydrogenolysis of 4-methoxyacetophenone displayed two opposite linear slopes for the catalytic system 1/p-X-C6H4OH (rho = -3.3 for X = OMe, t-Bu, Et, and Me; rho = +1.5 for X = F, Cl, and CF3). A normal deuterium isotope effect was observed for the hydrogenolysis reaction catalyzed by 1/p-X-C6H4OH with an electron-releasing group (kH/kD = 1.7-2.5; X = OMe, Et), whereas an inverse isotope effect was measured for 1/p-X-C6H4OH with an electron-withdrawing group (kH/kD = 0.6-0.7; X = Cl, CF3). The empirical rate law was determined from the hydrogenolysis of 4-methoxyacetophenone: rate = kobsd[Ru][ketone][H2]-1 for the reaction catalyzed by 1/p-OMe-C6H4OH, and rate = kobsd[Ru][ketone][H2]0 for the reaction catalyzed by 1/p-CF3-C6H4OH. Catalytically relevant dinuclear ruthenium hydride and hydroxo complexes were synthesized, and their structures were established by X-ray crystallography. Two distinct mechanistic pathways are presented for the hydrogenolysis reaction on the basis of these kinetic and spectroscopic data. (Chemical Equation Presented).
A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 2879-20-1
Reference£º
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem